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A systematic investigatiozl has been carried out on the theory of joint probability distribution 
of signs of structure factors, which is applicable to centrosymmetric space groups. Joint probability 
of a set of centrosymmetric structure factors is also calculated in a more general way than the 
methods given by Bert aut in 1955 and Klug in 1958. Using the results thus obtained, various 
expected values for signs and their products necessary for the evaluation of corresponding prob- 
abilities are calculated. The results arc discussed. 

1. Introduction 

The statistical methods in crystallography introduced 
by Wilson and continued by a number of authors 
have been extended to the determination of phases 
of structure factors. Besides the development, along 
the line of Wilson's theory, followed by Hauptman & 
Karle (1953), Cochran & Woolfson (1955), Bertaut 
(1955a, b), Klug (1958), and others, algebraic methods 
have also been worked out by Cochran (1954), 
Hauptman & Karle (1957), Bertaut (1959), and others. 
The new joint probability methods by Hauptman & 
Karle (1958) as well as the 'chalne statistique' by 
Bertaut (1960) have also beert devised. Finally 
Vaughan (1959) has made critical comments on these 
statistical methods. 

In the present paper we put forward a statistical 
theory applicable to any centrosymmetrie crystal, 
from the point of view mainly similar to that  of 
Bertaut (1955a, b) and Klug (1958), but trying to 
generalize their methods in some respects. 

In § 2 a concept of joint probability of signs is 
introduced which is useful in the treatment of the 
cases of centrosymmetric space groups and its nature 
is analysed. 

In § 3 our method of calculating joint probability 
of structure factors is shown. I t  is mainly based on 
the methods of Bertaut (1955a, b) and Klug (1958). 
However, our results have a form more general and 
capable of easy applicaf, ion to any special centre- 
symmetric space group. 

In § 4 various probabilities of signs and sign products 
as well as the corresponding expected values 
(mathematical expectations) are given for the case 
of P i ,  using the theory of § 2 and the results obtained 
in § 3. The results are then discussed. 

2. Joint probabil i ty  distr ibution of s igns  
of s t ruc ture  factors 

In the statistical theories for the determination of 
signs of structure factors hitherto given by many 
authors, the heart of the problem is in finding the 
joint probability of structure factors with their 
magnitudes and signs. Here the magnitudes are 
determinable in principle from measurements. Let us 
introduce a concept of the joint probability distribu- 
tions of signs under the condition that  the corre- 
sponding magnitudes of structure factors have already 
been fixed in accordance with observation. 

2.1. General expression 
Denote by E~ the normalized structure factors, s~ 

their signs (+ 1 or - 1 )  and E~ their magnitudes; i.e. 
E,=E,s~, and E~=IEi[. Introduce joint probability 
distribution function P(Sl, s2, . . . ,  sin) for a set, of m 
signs sl, . . . ,  Sin. Then it is easily shown that, in view 

2 =  ofs,=___l ands~ +1, 

7 n  

P(s,, . . . ,  

i=1  i>j=l  

+ ~ <s,sjst)S@st+.. .+<Sl.. .Sm)Sl. . .sin},  (1) 
i>j>l=l  

in which 

(si) = . Z  . . .  2 '  s ~ P ( s l ,  . . . ,  s,,),  
S l = + l  Sm=:kl 

(sisj) = ~7 . . .  .S sisiP(sl . . . .  , Sin), 
s l =  :t:1 Sm=:t:l 

(sisj.st) = 2: . . .  • s~sjstP(sl . . . . .  sin), etc. 
S l = + l  sin=+1 

(2) 

The summation is to be carried out over all the possible 
values, +1 and - 1  for each sign s , ( i = l , . . . , m ) ,  
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and the symbol < > expresses the expected values 
(mathematical expectations) of s~, s~s¢, s~s~s~, etc. 

I t  is to be noted tha t  the expansion of the form of 
(1) will be generally applicable to any statistical 
system, such as a spin system, of m variables 
sl . . . .  , s~,  each of which can take its value of + 1 
or - 1. 

2-2. Some probabilities obtainable by reduction f rom jo in t  
probability of  signs 

Denote by  P(sl)  the probabil i ty for the sign of li~1 
to be s~ irrespectively of the other signs, s2, . . . ,  sin. 
P(sl) can be derived from (1) by reduction concerning 
the other variables s~, . . . ,  S,n, 

P(sl)  = 2 . . .  Z ,  P(s~, . . . ,  sm)=½{l+<sl>sl} .  (3) 
8z=±l Sm=:hl 

In  the same way, denoting by P(sl,  s2) the prob- 
abil i ty for the signs of E~ and Be to be sl and s~ 
respectively is given by 

P(s~, s~) = 2, . . .  2 P(s~, . . . , s i n )  
sa= :t=1 sin=±1 

= (i/2~){i +<s~>s~+<s~.>s~.+ <s~s2>slse}. (4) 

Similarly, 

P(sl ,  s2, s3) = .2, . . . . ~  P(sl ,  . . ., s~) 
sd=±l  Sm= ± l 

= (1/2 a) (1 + <sl >sl + <s2>s2 + <s3>s8 + <sls2>sls2 

+ + <s s >s sl + <sls2s >sls s }, 

and so on. 

2.3. Expected values 

When the probabili ty for sl to be + 1 is denoted 
by P+(sl), it is wri t ten from (3) as 

P+(s~) = ½{1 + <st>}, (6) 

and the probabili ty for s~ to be - 1  

P-(sl)  = ½{1-- <s~>}. (7) 

Hence the expected value <sl> can be interpreted as 
a measure of deviation of these probabilities P±(sl )  
from a mean value ½. 

Wh°n a sign product sis2 is considered, the prob- 
abil i ty for sis2 to be + 1 is derived from (4) to be 

P+(sls2) = P+, +(sl, s2) + P-, -(sl, s2) 
= (1/22){1 +<s1>+<s2>+<sls2>} 
+ (i/22){1 -<st>- <s2> + <sls~.>} = ½{I + <s~s~.>}, 

and the probabili ty for sis2 to be - 1  is 

P-(sls~.) = P+, -(sl, sg) + P - ,  +(sl, s2) 

= (1/2~){1 + <s~>-<s~.>-<s~s2>} 
+(1/22){1-<s~>+<s2>-<s~s2>}=½{1-<s~s~>}. (9) 

In  this case it  is also shown tha t  the expected value 

<sis2> corresponds to the deviation similar to tha t  
in (6) and (7). 

Concerning a triple product s~s2s3, it is given tha t  

P+(slszss) = ½{1 + <sls2ss>}, (10) 

P-(sls2sa) = ½{1 - <sls2ss>}. (11) 

Generally the expected value <si . . .  sk> is the deviation 
of the probabil i ty for a sign product s , . . . s~  to be 
+ l  or - l  from ½. 

I t  is to be noted that  the quantities required for 
determination of signs of structure factors in statistical 
theories are such expected values. 

2.4. Conditional probability 

Let the conditional probabili ty for sl relative to 
a fixed value of s2 be denoted by P(slls2) or Psi(s1). 
The relation between this quant i ty  and P(sl ,  s2) is 
given by 

P(sl ,  s2) = P(s2)P(sl [s2) , (12) 

where P(s2) and P(sl,  s2) are expressed by (3) and (4). 
Therefore, 

P(szls2) = Psi(s1) 

_ P(sl ,  s2) _ (1/2 2) {1 + <sl>sl + <s2>s2+ <8182>8182} 

P(s2) + <s2>s } 
{ <sl>+<sls >s2 } 

= ½ 1 -4- 1 - ~ < - 8 2 ~  Sl ~ ½{1AC <81>s281} , (13) 

(5) 
in which 

<S1>82 = <81>-4- <8182>82 
1 + <s2>s2 (14) 

is the expected value for Sl relative to the hypothesis 
tha t  the value of s2 is fixed. 

In  the same way as in (12), (13) and (14), the 
expected value for sl relative to the hypothesis tha t  
a fixed value is given to the sign product sis2 is 
written 

<sl> + <se>sls2 (15) 
<si>81.  = 1+ <sls2>sls  

The expected value for sl under the condition tha t  
s2 and sa have fixed values respectively is given by 

<sl>+ <sls2>s  + <sls >s3 + <sls s >s s3. 
<81)s2,s3 = 1 +<s2>s2+<s3>sa+<s2s3>s2s3 

On the contrary, the expected value for sl relative 
(8) to the hypothesis for the product s~s8 to have a fixed 

value is 

1 + <s2s3 > sesa (17) 

Other similar examples are 

1 + <s2sa>s~s3 ' (18) 
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81>818 8283 

+ ( 2 0 )  = , + " 

Derivations of other expected values under any 
given condition like one of the relations from (14) 
to (20) can easily be made. Thus, basing oneself upon 
these relations up to (20), it can be understood that 
when three structure factors of the indices h, h', h + h' 
are considered as possessing the relation s~sj,,sj,+~,, = 1, 
the expected value for an sa relative to the hypothesis 
sas~,,s~+a, = 1 is given by 

= ]$  ' 

corresponding to (20). Therefore, using (21), the 
conditional probabili ty for s~ = 1 becomes 

[ + 
= ~ 1  + (22) 

2.5. The  relation between P(s l ,  s2, . . . . ,  sin) and 
P(E1,  . . . ,  E m )  

Let the joint probabil i ty  distribution for a set of m 
structure factors be denoted by P ( E , ,  . . . ,  Em).  This 
is related tO P(s l ,  . . . ,  Sm) by 

P ( E 1 ,  

= P ( E , ,  . . . ,  E m ) P ( 8 1 ,  . . . ,  8m ]El ,  . . . ,  E m )  , (23) 

in which P ( E , ,  . . . ,  E , , )  is the probabil i ty for the set 
of El, . . . ,  E m  to have the respective given magni- 
tudes El, . . . ,  Em independently of the values of signs 
s x , . . . , S m .  I t  is given by 

P(E1,  . . . ,  Era) = ~,  . . .  )-_~" P ( E l s l ,  . . . ,  E,~s,, ,) .  

~,=±1 ,.~= ±1 (24) 

P(s l ,  • • . ,  SrnlE1, • . . ,  Era) in (23) is nothing other than 
a conditional probabili ty for a set of sign variables 
sl, . . . ,  Sm related to the hypothesis of fixed magni- 
tudes of E , , . . . ,  Era. Therefore, it is obvious tha t  
this conditional probabili ty P(s , ,  . . . ,  Sm I E*, • . . ,  E,n) 
equals to P(s l  . . . .  , sin) originally given as (1). 

Thus the relation (23) gives 

P(81, . . . ,  8m) ~ P(s l ,  . . . ,  8m I E1, . . . ,  Era) 

P(E1 ,  . . . ,  Em)  P ( E l s l ,  . . . ,  Emsm)  

-- P (E1 ,  . . . ,  E m )  ~,  • • • Z P ( E I s l ,  . . . ,  E m s m )  
81=±1 sm=il  (25) 

The right hand side of (25) can be expanded in a form 
like (1). In  such an expansion the coefficients, which 
are expected values, will be explicitly given, if we 
can obtain the joint probabil i ty of structure factors 
P ( E , ,  . . . ,  E m ) .  

3. A genera l  expression for the joint probability 
distribution of structure factors P(E~ . . . . .  Era) 

Consideration given in § 2 on the basis of the joint 
probabil i ty  of signs P ( s , , . . . ,  sin) in the expansion 
form (1) has been found to be useful for s tudying 
the relationships among a number of probabil i ty 
equations concerning a set of signs s,, . . . ,  Sm. How- 
ever, by this procedure, any information about ex- 
pected values themselves can never be derived. In 
order to obtain these values explicitly, we have to 
make use of the relation (25), which contains the 
joint probabil i ty of structure factors P(E, ,  . . . ,  Em).  
Starting, in this paragraph, from a priori  probabil i ty 
of 'uniform distribution'  of the atoms in a unit cell, 
we show tha t  the joint probabil i ty  P ( E 1 , . . . ,  Era) 
will be obtained in a general form applicable to any 
centrosymmetric space group. This is a kind of 
generalization of Klug's theory put  forward in 1958. 

3"1. M o m e n t  o f  

Introduce trigonometric structure factors ~(h)" 

S--1 

~(h) = ~ ~ exp [27dhrSp] 
p--O s--1 

= T ~ exp [2~iRvhr] exp [2~ihtp] , (26) 
p = 0  

S~=(R~ltp),  p = 0 , 1 , . . . , s - 1 ,  

in which s is the order of factor group and Sv the 
pth operation, of which the rotational par t  is Rp and 
the translational part  tp. T is the order of translation 
group (~=2 for A, B, C, I ;  ~ = 3  for R; z = 4  for F). 

Under the a priori  probabil i ty stated above, a 
mixed moment can be defined by 

m~ ..... (h, . . . . .  hm) = ~ ( h l ) . . . ~ ( h m )  

t..." .... ' j .,.:-,1 [2~ihl rSp]~.  = z "  f dr ip~__'0exp , . .  
s-- I u) 

After some calculations (see Appendix I) we get 
the following expression as a result" 

m~ ..... (h~ ..... hm) 

~!...w! 
=z ~+'''+~ 2 ... Z 

P P P 

x e x p  [27~i l s~=lo(~phl-b . . . T o)phm)tp}J 

s-1 )} 
X b {~0R, (~ph l  + . . . + a)phm = , (28) 

where ~p , . . . , o~p  are the integers in the ranges 
0 <_ ap <_ a,  . . . ,  0 <__ wp <_ co, respectively; the sum- 
mation is to be carried out over all possible combina- 
tions of c~p, . . . ,  cop satisfying the conditions 
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s--1 s--1 

2 : ~  = ~, . . . ,  2:09v = 09. 
p = 0  p = o  

The symbol 5, the Kronecker symbol, means 

d 2:R~(~xvh~+...+09phm) =1,  if 
~ p = O  

s--1 

2:  R~(oc~h~ + . . .  + 09phm) = 0 ,  
p=O 

5b__0Rd~hl= q-...q-09phm) = 0, if 

Rp(aph~ + . . .  + 09vhm) 4 0 . (29) 
p = 0  

The relation (28) has been tested by us to hold 
for a number of cases hitherto calculated by other 
authors. For the case of P1, (28) becomes 

m . . . . .  (h~ . . . .  , h,n) = 2:  . . .  ~,~ x 
aO+Oq=c~ ~o0+~o1= ~o 

a ! . . . 09 !  
0¢0! .  • • 090! 0 ¢ 1 ! . . .  091! ~{(0¢0 - o ¢ 1 ) h l  + . . .  -I- (090 - -  0 9 1 ) h m } .  

(30) 

A formula corresponding to this relation has been 
given by Ber taut  (1955a). 

3.2. Moment -cumulan t  transformation 

Following Klug (1958) let us prepare the cumulants 
from the moments in order to calculate the joint 
probabili ty distribution of structure factors. The 
moment-cumulant transformation is generally ex- 
pressed by 

2:  k~ ~--~.~ = log m~ , mo -- 1 , (31) 

where u is a carrying variable, mn the moments and 
kn the eumulants. As is known, it is derived from (31) 
tha t  

kl = ml, k2 = me, ks = ms, k4 = m 4  - -  3m~ , 
k5 = m s  - l Om2ms , 

k6 = m 6 -  lOm~ - 15m~m4 + 30m~, 

k T = m T - 2 1 m 2 m s - 3 5 m 3 m 4 +  210m~m3 , etc. (32) 

Extension of the one-dimensional case (31) to the 
multidimensional one gives the following relations 
instead of (32). 

k~,...,o=m~,...~,, for c ~ + . . . + w = 1 , 2 , 3 ,  (33) 

k~,. . .~, = m~,. . .~, - ½ 2:  2:  m~e. . .~,, m~,,. . .,o,, 
a ' + . . . + c o ' = 2  ~ " + . . . + c o " = 3  

c~!. . .w! 
x ( o C t . . .  09 ' ! ) (~" ! . . . 09" ! )  ~{~-(~' +~")}" " " 

a{w-- (09'+ 09")}, (34) 

for c ¢ + . . .  + w = 4 ,  

k~...o, = m~...o~- ~ ~," m~,..~,m~,,...~o" 
a ' + .  • • +co '=2 a " + .  • • +eJ"=  2 

a ! . . . o9 !  

( E ! . . .  09' ! ) ( E ' ! . . .  ~ "  !) ~{~-  (E + ~ " ) } . . .  

~ { ~ - ( ~ ' +  ~ " ) } ,  (35) 

for a + . . . + 0 9 = 5 ,  etc. 

3"3. Moment-generating func t ion  

Moment-generating function M ( u l ,  . . . ,  urn) is given 
by the following expression (Klug, 1958) 

M(ul, . . . ,  urn) 

= exp [½(u~+. . .  +u~)]  exp n=!~ Ln 

in which 

(36) 

k . . . . .  ° 
L ~ =  ~+. 2:. +~ = ~ ~ L : - S , '  \ V ( - - ~ ) / .  " \ 1 ~ - ~ 3 ~ ) ] '  (37) 

f~ 
z n = 2 : c f }  ~ and 7~j - (38) 

Further  /c . . . . .  is a cumulant, S = s v  the symmetry  
number (s the order of factor group, r the order of 
translation group), and ~1 . . . .  , s~ the statistical 
weights of special type reflections (Bertaut, 1959, 
1960). f i  is the atomic structure factor, N the number 
of atoms contained in unit  cell and ~j the normalized 
scattering factor, zn= 1/(N~/2-1) holds in the case of 
equal atoms (for the case of non-equal atoms, we 
shall in what follows ignore the dependence of qgj 
and fj  on h). Expanding (36) in series up to the term 
of the order of 5 r-5/2, we get 

M ( u l  . . . .  , u ~ ) = e x p  [½(u~ + . . .  + u~)] 

× [1 + (zdS)L3 + {(z4/S)La + (z~/2SZ)L'~} 

+ {(zsIS)L5 + (zsza/S~.)LaL4 + (z~/6S3)L~} 

+ {(z6/S)L6 + (z3zs/S2)L3L5 + (z~/2S2)L~ 

+ (z~z4/2S3)L~L4 + (z~/24S4)L~} 

+ {(z7/S)L7 + (zsz6/S2)L3L6 + (z4zs/S2)LaL5 

+ (z~zs/2SS)L~L5 + (zsz~/2Z3)L~i 

+ (z~za/6sa)n~na + (z~/12OSS)L~} + . . .  ]. (39) 

3.4. Joint  probability distribution of structure factors: 
a general expression 

We can obtain the joint probabil i ty distribution 
for a set of structure factors P ( E 1 , . . . ,  Era), which 
is the inversion transformation of M ( u l ,  . . . ,  urn) as 
is shown by Klug (1958). Taking into consideration 
further the relations (28), (33), (34), (35) and (37), 
we get 
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• [ -  ~(E1 + . . .  +E~)] P(E~, . . ,  Era)=l/((2~) ra/s) exp x s 

X [1 + (ZB/~)~v'3 + (Z4/~){~4-- ½~S2} + (Z~/2~2)~33 

+ (~ /~){z~-  ~ s }  + (:,:~/as){~3- ½z~ss} 
+ ( ~ / 6 ~ ) ~  + (z~/s){z~- z 4 s -  ½ ~  + ~zs~s} 
+ (=~=~/a~){z~- z~e} + (:~/~s~){~- ~,~s + ¼~s~q 
+ ( :~=~/2~){z~-  ½ ~ }  + (~ /24a~)2~  
+ (z~/Z){l~- l~e-  I ~  + I~2~} 
+ (~0 /~){~6~-  ½ ~ -  ~ + ½z~ee} 
+ (z~z~/s~){I~- ½~e~-  2:~3~ + ½2",~,s} 
+ ( ~ / 2 ~ ) { ~ -  ~ }  + ( ~ / 2 ~ ) { ~ -  ~ =  
+ ¼~e~q + ( ~ / ~ ) { & ~ -  ½~e~} 
+ (z~/120S5)I~3333 + . . .  ] ,  (40) 

in which zn is the same as in (38), S the symmetry  
number sT and 

~Y' a. . .1 =-- "~ " "  2.  X(a'p+.. • +a~'p)-- a X(~,p'"'+.. • +a~p'"')=/ 

( V(~I~))~(~'~++~'"~. . .(V(~l~ra))~(~'~+...+~ > 
X s--1 

n ( ~ . . . , o ~  ~)... (~T ~... ~o;;" ~) 
p=O 

× e~V ~ i  {(~;+... +~;")h~+... 
Lp=O 

' 11 + ( c o p + . . .  + w;")hm}t~ 

x H~(~,~+... +~,,-,)(E1)... H~(~,~+... +~/,.,) (Era) 

i s-I , , } x ~ 2.R~(c~h~+...  +~%h~) . . .  
(p=0 

s--1 

In  (41) Hn(E) is the Hermite polynomial of degree n. 
Fur ther  s, R~, t~, T, e~, . . . ,  ern and ~{. . .}  have the 
same meaning as in (28), (37), etc. The summation 
is to be carried out over all possible combinations of 
the values of non-negative integers c~, . . . ,  o~p, . . . ,  

l l ' t  f t ' /  C~p , . . . ,  (Op wh ich  sat is fy  the condi t ions 

! 

2 ( o ~ + . . .  + %) = a, etc. 
p=0 

(40) with (41) is a general expression of the joint 
probabili ty distribution expanded in series up to the 
term of 0(N-5/~). This is applicable to any case of 
centrosymmetric groups. In  Appendices II,  I I I  and IV, 
there will be shown some simple examples of special 
cases of ~ , . . . / a n d  P(E1, . . . ,  E~). 

4. Probabi l i t ies  and expected values  
for the case of P i 

I t  is possible to write directly the explicit form of 
P(E1, . . . ,  E~) for the case of P i  by substituting in 
(40) the expression for Z~.../(hl, . . . ,  hm), the deriva- 
tion of which is omitted here to save space but  can 

be performed by  the method given in Appendix II.  
As the purpose of the present paper is not to give such 
an explicit form of P ( E 1 , . . . ,  Era) but  to find the 
joint probabil i ty of signs P(sl, . . . ,  sra), we shall give 
the following cases which are derived from the results 
of our general and systematic calculations concerning 
signs. 

4.1. Expected value (Shl), where h l = 2 h  
The expected value of sign Ssh has been obtained 

from the general expression of P ( E 1 , . . . ,  Era) as 
follows: 

<82h ) ~-- A(2h) =A0 + A1 + A2+ A~ 
+A3+A~+A~'  +A4+A/t+As+O(N-512) , (42) 

A0 = z3{ ½H1 (Esh)H2 (Eh) } ,  (43) 

A1 -- - zs{½H~ (Esh)H4(Eh) + ¼H3(Esh)gs(Eh) } 
- -  zsz4(~H1 (Esh)He(Eh) + ~Hs( E2h)Hs(Eh) } 
+ z~{~H3(Esh)H6(Eh)}, (44) 

As = z5 {~H3(Esh)H2(E3h) } 
+ z3z4{½H2 (Eh)H3 (Esh)H2 (E3h) 
+ ~H4(Eh)HI(Esh)H2(E3h) 
+ ¼Hs(Eh)Ha(Esh)H~.(E~) 
+ ¼H3(Esh)H2(E3h)H2(E4h) 
+ ~H3(Esh)H2(Ea~)H2(Eeh)} 
+ zaa{¼Ua(Eh)Ha(Esh)U2(Eah) 
+ ~H2(Eh)Ha(Esh)Hg.(Eah) 
+ ½He(Eh)Ha(E2h)Hg.(Eah)H~.(E4h) 
+~Ha(Eeh)H2(Eah)H2(Eah)Hs(E6~)} , (45) 

t 1 As =zs(~H4(Eh/2)Hl(Esh) 
+ z3za(¼H4(Eh/s)He(Eh)Hl(Esh) 

+ {H4(Eh/s)H2(Eah/s)HI(E2h) 

+ 1H2(Eh/3)H4(E2h/3)H1 (Esh)} 
+ z~(~H4(Eh/2)H4(E h)HI (E2h) 
+ {Ha(EhIs)Hg.(Eh)Hg.(Eah/s)HI(Eeh) 
+ ¼Hg.(Eh/s)H4(E2h/a)H2(Eah/a)HI(E2h)) , (46) 

A3=zs{¼H~(E~_h) 2 S2(Ek)H~.(Eh+k)} 
k 

+ z3za{Hl(E2h)Hs(Eh) 2.  H2(Ek)H2(Eh+k) 
k 

+ ½HI(Esh)H2(Eh) 2.  Hs(Ek)He(E2h+k)} 
k 

+ z~{¼H~(Esh)Ha(Eh) 2," S2(Ek)Hg.(Eh+k) 
k 

+ ¼Ha(Esh)H2(Eh) .~ Hs(Ek)H2(Esh+k)}, (47) 
k 

A ~ = z3z4(¼H~ (Esh) 2 .  H2(Ek)Hs(Esk)Hs(Eh+k)} 
k 

+ z~{Sl(E2h)H2(Eh) 2 H~.(Ek)S2(Eh+k)H2(Esh+k)}, 
k (48) 
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" 3 1 A a = za {~H~ (E~a) ~ He (E ~) H~ (E~. k ) H2 (Eh + k) H~ (E ~h + ~ k) 
k 

+ ½H~(E2h) ~ H~.(Ek)H~.(Eh+k)H~(E',h+k)H2(E',h+ek)}, 
k (49) 

Aa= zsza{~H~ (E~.~)H~(Eh)H4( Eh) 

+ ~H~(E2h)H4(E2h)H2(Eh)} 

--zaa{~H~(E2h)H~(E~h)H~(E~)H4(Eh)} , (50) 

A~= - z~(¼H~(E2h)H~.(E.zh)H~(E,,)He(Eah) 

+~H~(Eeh)H~(Eh)H~(Eh/2) 

+ ~Hx (E2h)Ha(E2n )He (Eh)He (Eah)}, (51) 

A~= -zas(¼H~(E2h)H~(Eh) .~, Hu(Ek)H~(Eh+k) 
k 

"4- ¼H~(E2h)H~(E2h)H2(Eh) .,F H~(E~)H~(E.,_h+k)}. (52) 
k 

These terms A0, . . . ,  A~ are divided into the following 
classes according to characteristics given below.* 

A o  

A~ 
A~. 

A2 

As 

! 

As 

t !  

As 

contains spectra E~ and E2h only to the order N -~l'z. 
contains spectra Eh and E~h only to the order N -sly. 
contains the terms of a few spectra Eah, Eah, Esh 
as well as Eh and E2h, the order being O(N-s/e). 
contains the terms of spectra Eh/~, Esh/2, Eh/s, 
Eeh/3, Eah/s in addition to En and E2h, 0(N-3/2). 
contains the terms depending on certain sum 
(average) effects of spectra in a sufficiently large 
range of the reciprocal lattice which are expressed 
by the forms _,FH2(Ek)H2(Eh+k), etc. This term 

k 
is similar to the formulae of Coehran (1954) and 
Klug (1958, equation (5.1)). 
contains the terms similar to the case of As, 
possessing, however, the forms of the type of 

H~(Ek)H~(E2k)H~(Eh+k), etc. 
k 

contains the terms similar to the cases of As and 
A '  a, possessing, however, a different type of sum 
effects such as 

~, Hg.(Ek)H2(E2k)H2(Eh+k)H2(E2h+2k), etc. 
k 

Aa contains the terms of spectra Eh and E2h arising 
from the expansion of the denominator in (25) 
in evaluation of expected values. 

A~ contains the terms arising from the same circum- 
stance as in An, however, other spectra besides 
Eh and E2h entering. 

A~ contains the sum effects of many spectra arising 
from the expansion of the denominator in (25). 
This term is similar to Klug's fourth-order for- 
mula (equation (5.18)). 

* E x c e p t  in t e r m s  An, A 4' a n d  A s, t h e  s a m e  s p e c t r a  c a n n o t  
a p p e a r  m o r e  t h a n  once  in  one  of t h e  H e r m i t e  p o l y n o m i a l  
p r o d u c t s .  I t  is t o  b e  a d d e d  t h a t  t h e  s u m m a t i o n  w i t h  r e g a r d  
to  k h a s  a l so  b e e n  c a r r i e d  o u t  w i t h  th i s  p r e c a u t i o n .  M o r e o v e r ,  
t e r m  E 0 is n o t  i nc luded .  

4.2. Probability P+(S2h) 
The probability P+(S2h) is then obtained from (6) 

with (42) 
P+(s2n)= ½{1 + <S2h>} • (53) 

If the relating structure factors are assumed to be 
limited only to En and E2h, then 

<S2h} = A0+ A~ + A4. (54) 

This result is equivalent to that  of Klug (1958). 
If the terms relating to Zaz4 and z~ in (42) are all 
neglected, we have 

<so.h}=zs{½Hl(E2h)g2(Eh) } -- Zs{½g~(Z2h)H4(Eh) 
+ ¼ Hs(E.,h)H2(Eh) } + z5 {~Hs(E._,h )H2(E3h) 

+ ~H4(Eh/2)H1 (Eeh)} 
+ zs{¼H~(Eeh)~." He(Ek)He(Eb+k)}. (55) 

k 

This is equivalent to that  of Bertaut  (1955a). Only 
the first and fourth terms are found in the monograph 
by Hauptman & Karle (1953). 

I t  is to be noted that  the terms As, A~, A~' and A5 
contain those used by Vaughan in his regression 
formulae. As Vaughan commented, when the number 
of spectra is taken too large, the sum terms will 
generally have such a strong effect that  the expansion 
in orders of N -1/" might lose its effectiveness. However, 
as shown in Appendix V, even in such a case, we may 
rearrange the order of the terms so as to maintain 
its usefulness, the dominant terms in (43)--~ (52) 
bceoming A0, A3 and As. 

In such a case 

<S2h} = Ao + As + A5 = ½z3Hl(E2h)H2(Eh) 
- ¼{(2z~ - zs) + 4zs(z~ - z4)H2(Eh)} 

× HI(E.)h).~" H~.(Ek)He(Eh+~) 
k 

- ½zs(z~ - z4)HI(E2h)H2(Eh).~,H2(Ek)H~.(E2h+k). (56) 
k 

Further the case of equal atoms is now considered. 
Then we have 

zs = N -1/2, z5 = zsz4 = z~ = N -s/2. (57) 
Hence, 

<s..,h > = A 0 + A a + A5 = (1/21V1/2)HI(E2h)H~.(Eh) 
- (1/4Na/e)HI(Eeh) .~ H~_(Ek)H2(Eh+k) • (58) 

k 

Substitution of (58) into (53) gives 

P +(s~h) = ½{ 1 + <S.~h } } = 1 + (1/8N1/e)Eeh {2(E~ - 1 ) 

- (I/N) .~2 ( E ~ -  1)(E~+k-- 1)}. (59) 
k 

This is the probability formula corresponding to 
Cochran's relation (1954): 

Eeh=N½{2(E~- 1 ) - N ( E ~ , -  1)(E~,+k-- 1)k}, (60) 

which Hauptman & Karle have also derived with 
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their new joint probability method (1958), Vaughan 
(1959) with his regression formula and some authors 
rederived by the algebraic approach (Hauptman & 
Karle, 1957; Bertaut, 1959). 

4"3. Expected value <%~%~> 
The expected value of a product of two signs 

%1 and sh~. is obtained in the form 

<ShiSh~>=<Shi><Sh~>+<ShlSh~>*, (61) 

where the first term in the right hand side of (61) 
is given by the product of two expected values of (42): 

<Sh~> <%~> = A(h~)a(he) 
= z~(~H~(Ehl)H~(Eh~)H~(Eh~/~)He(Eh~/e)}+ 0 ( ~  -~). 

(62) 

The second term <%~%~>* is a sort of residual term 

<sh~%~>* ~ B(h~, he)=B~+B~.+B~+O(~-~),  (63) 

in which 

B~ = z~( ½H~ (Eh~)H~ (Eh~)//2 (E½(hl+h~)) 
+ ½H~(Eh~)H~(Eh~)H2(Eh~I_h~))}, (64) 

B2 = z 2 (H1 (Eh~)H~ (Eh2)H2 (E½(h~+h2))H2 (E½(hl--h~)) 
+ ½HI(Eh~)HI(Eh~)H~.(Ehl+h2)He(E½(hi+h~)) 
+ ½H~(Eh~)H~(Eh~)H2(Ehl_h~)H2(E~(h~-h~))}, (65) 

' 1 B~. = za( 6-H~ ( Eh~ )H3( Eh~ )(~h~, 3h~ + int.} 
+ z~ ([ ½H~ (Ehl)H3(Eh~)He(Eeh~)(~h~, 3h~ + int. ] 
+ [¼H~(Eh~)H3(Eh~)H2(Eh~/e)(~h~, 2h~ + int.]}, (66) 

where ~ is again the Kronecker symbol, int. the 
expressions for hz and h~. in the corresponding relation 
to be interchanged. I t  is to be noted tha t  the form 
of the relations (61) and (67) given below may be said 
to have a natural  appearance showing well the co- 
operative character of the correlation of signs. I t  is 
further added tha t  B~ is the term given by Bertaut  
(1958). 

4"4. Expected value <Sh~%~Sh~> for h~ +_ he +_ h3 = 0 
Our calculation on the expected value for product 

of three signs %~, Sh~ and Sh~ where hi + h~._+ h3=0 
gives 

= + 

+ <Sh~> <ShaSh,>* + <S,,a> <ShlSh2>* + <ShlSh~Sh~> *, (67) 

where each term in (67) possesses the same meaning 
as in (61); namely, 

<Shl > <8h2 > <8h3> = A(hl)A(he)A(h3) 
=z] {~H~(Eh~)H~(Eh~)HI(Eha)H2(Ehl]2) 

x He(Eh~/~)H~(E~al2) } + O(I-~/~), (68) 

+ + 

=A(h~)B(h2, h3) +A(he)B(h3, h~) +A(h3)B(hl, he) 
=z3za {[¼ H~(Eh~)HI(Eh~)H~(Eh~) 

x H2(Eh~/2)H2(E(±h~h~)/~) + cyc.] 
+ [~H~(EhI)H~(Eh~)H3(Eh~)H2(EhI/2)(~h~, 3ha + perm.]} 
+ z~([¼H~(Eh~)H~(Eh~)H~(Eha) 

x He(Ehl/~)H~(E±h~h~)He(E(±h~ha)/~) + cyc.] 
+ [~H~(Eh,)H~(Eh~)H3(Eha)H2(Eh,/~) 

x H2(Eh~/2)(~h~, eha + perm.]} + 0(N -~/2) , (69) 

<ShlS%%a>* -- C(h~, h2, h3) 
=Co+C~ +C~ +C~.+C~ +C3+C4+C~+O(N-~/2), (70) 

Co = z3H1 (Ehl)H1 (Eh~)H1 (E~) , (71 ) 

C1= - z5 (½ H3(Eh,)H~(Eh2)HI(Eh3) + cyc.} 
- z~z4 (18 H~(Eh~)H~ (Eh~)H~(Eha) + cyc. } 
+ z~ {~ H3(Eh~)Ha(Eh~)H3(E~)}, (72) 

Ci = z3za {[¼ H3 (Ehl)H3(Eh~)H~ (Eha)(~h~, eal + perm.] 
+ [-~ H~(Eh~)H~(Eh~)HI(Eh3)~h~, 2hi 6ha, 3hi + perm.]} 
+ Z~ {1 s H5(Eh~)Ha(Eh~)H~(Eha)(~h~,~_h~(~ha,3hl + perm.}, 

(73) 

C2 = z3za {[½ H3 (Eh~)H~ (Eh2)H~ (Eh3) 
X H~.(E<3h~±h2~=h~)/2) + perm.] 

+ [½Hs(Ehl)H~(Eh2)HI(Eh3)H2(E2~I) + cyc.] 
+ [¼ HI(Ehl)H~(Eh2)H~(Eh3)H4(Ehde)+ cyc.]} 
+ z~ ([½H~(Eh~)H3(Eh~)H3(Eh3)H~.(E+h2~=ha) + cyc.] 
+ [½ H~ (Ehl)H~ (Eh2)HI(Eh3)H4(Ehl/~) 

x H2(E(+~h~)/2) + cyc.] 
+ [ ½ H3( Eh~ )H~ (Eh2)Ul (Eha)He(E2h~) 

X He(E(3h~ ~h~ ha)/~) + perm.] 
+ [~H~(Ehl)H~(Eh~)H~(Eha)H4(Eh~/~) + cyc.] 
+ [~H~(Eh~)H~(Eh~)H~(E~a)H2(E2h~) + cyc.]}, (74) 

C~ =z~{[¼ H3(Ehl)H3(Eh~)H~(Eh3)Hg.(E4hl) 
x ~th~ ' 2hl ~ha, 3hi + perm.] 

+ [¼H3(Ehl)HI(Eh~)HI(Eh3)H4(E2hl) 
x ~h2, 3hl ~}h3, 4hl + perm.]}, 

C z 3 f l  3 = 3 I~ H3(Ehl)HI(Eh~)HI(Ehs ) 
x • H2(Ek)H2(EhI+k) + cyc.}, 

k 

(75) 

(76) 

C4= zsz4 {~ HI(Ehl)HI(Eh2)HI(Eh3)Ha(Ehl) + cyc.} 
-- z~ ([½ HI(Ehl)HI(Eh~)HI(Eh3)He(Ehl) 

× H2(Eh2)H2(Eh3)] 
+ [½ H~(Ehl)HI(Eh2)H~(Eh3)H2(Eh2)He(Eha) 

× H2(E+h~Ths) + cyc.] 
+ [~sHI(Ehl)HI(Eh2)HI(Eh3)H2(Eh~)H4(Ehl/2) + cyc.] 
+ [~HI(Eh~)HI(Eh2)HI(Ehs)He(E:hl)H4(Eh~) + cyc.]}, 

(77) 
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C5-- -- za a {½ HI(EhOHI(Eh2)HI(Eha) 
x H2(Ehl)--~ H2(Ek)H~(Ehl+k) + cyc.}. (78) 

k 

The terms from Co to C5 in (70) are divided into 
classes like A 0 , . . . ,  A5 in (42).* Upon the similar  
consideration to tha t  in the case of (56), we obtain 

( ahlahZah3) = CO 2f- C3 "or- C5 = zaHI ( Ehl )H t ( Eh2) HI ( Eha ) 
- z] {H~(Eh~)H~(Eh~)H~(Eha) 

x .~, H2(Ek)H2(Ehl+k) + eye.} . (79) 
k 

Therefore, using (10) and put t ing  za=N -~/~, 

P+(ShlShsSha) = ½ {1 + (Sh,Sh,Sha)} 
= ½ + ( 1/2N 1/2)EhlEh=Eha 

x {1- (1 /~)[_~(E~, -1) (E~+k-1)+cyc . ]} .  (80) 
k 

This result  does not agree with any  one of the 
results: the equal i ty  obtained by  H a u p t m a n  & Karle  
(1958), the s imilar  one by  Vaughan (1958) and 
Ber taut ' s  s ta t is t ical  formula (1960). 

Note. The expected values of t r iple products of 
signs for the case of h~ ± h2_  ha 4=0 and fur ther  the 
expected values of higher mul t iple  products of signs 
have also been calculated. However, to save space 
we do not show these lengthy  and complicated results 
here. Al though they  are not given, it is to be noted 
tha t  all  such results have been derived as natural  
by-products  of our sys temat ic  procedure based on the 
theory of § 2 and § 3. 

5. Conclusion 

We have presented a sys temat ic  theory for deriving 
certain probabi l i ty  formulae useful for sign determina- 
tions of centrosymmetr ic  structure factors; tha t  is, 
s tar t ing from the joint  probabi l i ty  dis t r ibut ion for a 
set of signs, via reduced probabil i t ies,  we derive the 
corresponding expected values, the following con- 
di t ional  expected values, and  f inal ly  the various 
conditional probabil i t ies  for signs or sign products. 
Although not  discussed precisely hi therto by  any 
author,  such an invest igat ion seems to be of value in 
the pract ical  procedure for determining signs of 
centrosymmetr ic  s tructure factors. 

:By making  use of general space-group-symmetry 
operators, our calculation of the joint probability 
dis t r ibut ion of s tructure factors has been carried out 
in a more general manner  than  tha t  of other authors. 
As the results of such procedure, we f inal ly  obtained 

* The symbol cyc. means the expression for hp h e, h a in 
the corresponding equations to be interchanged cyclically, 
the symbol perm. the expression for hp h2, h a to undergo 
permutation operation. In each case, the same operation is 
acted upon the relation ht ___ ha ___ ha= 0 at the same time. 
In addition, it is to be noted that ± of the indices in these 
equations should agree with ± in h 1 ± h e ± h a = 0. The condi- 
tion for the summation over k is the same as in (42). 

the general expression (40), with (41), for the joint  
probabi l i ty  dis t r ibut ion of s tructure factors; this  is 
capable of easy application, not only for the case of 
a few chosen structure factors, but also for the  case 
of a greater number  of s tructure factors and even 
for the cases of higher symmet ry  space groups. 

The appl icat ion of the present theory to the  case 
of P i  has shown tha t  it covers not only the results  
given by H a u p t m a n  & Karle,  Bertaut ,  and Klug,  but  
also gives in a natural  maimer  a probabi l i ty  formula 
corresponding to the well-known Cochran re la t ion 
and fur ther  the terms related in a sense to Vaughan 's  
regression formula.  I t  m a y  be said tha t  by this  example  
of the case of P i  the implicat ions of the present theory 
have been demonstrated,  consolidating the well-known 
stat is t ical  theories developed by H a u p t m a n  & Karle,  
Bertaut ,  and Klug in a more unified form, and clari- 
fying the si tuations of the important  relations 
alrcady obtained in their  theories. 

A P P E N D I X  I 

Defining the tr igonometric structure factor ~(h) as 
(26), moment  m~ ...... is given by 

.m ........ (hx . . . .  , h,z) = ~ " ( h l ) . . . ~ ( h , , , )  

s--1 }'* 

S--1 

S--1 }~ 
x . . .  {p.~.,=~exp [2~iR,h,,r] exp [2~ihmt~] . ( I - l )  

A factor such as 

s--1 
{F0 exp [2m:'phlr] exp [2~ihltp]} 

in (I-1) can be rewrit ten easily as 

"' - .... exp .[",~,[_'~ n, ,~vh,r]} 
S--I 
p=o v=o x exp {2~zi[2",,,hltp]} , (I-2) 

P 

where ¢xp(p=0, 1 . . . .  , s - l )  are the integers in the 
ranges 0 _< ap _< ~x, (p = 0, l,  . . . ,  s - 1 ) ,  respectively,  
and the summat ion  is to be carried out over all 
possible combinations of values of z0, :~1, . . . ,  as-i ,  
sat isfying the condition 

s--1 
.~' &p~& . 

p=0 

Hence ( I - l )  can be t ransformed to 
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T ~+'''+~ dr )L' -- 

p 

x exp {2~i [..~' Rpsvhir]} exp {2~i [~" sph~tp]}}. 
p p 

x . . . { 2 :  ~o! 

p 

x exp {2zd[~,  R~og~hmr]} exp {2:~i [~" ~o~hmt,]}} 
p P 

a ! . . . oa !  
= ~ +  .... ~0' ~ . . 2 :  . !) 

z =~, ,r.,,,~=,,,H(a~!.. ~ 
P 

× exp {27~i [ ~  (arh~ + . . .  + w,hm)t,]} 
p 

x exp {2~i[ .~R~(aph~ + . . .  + m,hm)r]}dr. 
(I-3) 

As is known, the integration of the right hand side 
of (1-3) is as follows. 

foxp {2:d [fl_t.' Rv(a~h~ + . . .  + ~ophm)r]}dr 
p 

8--1 

Thus we arrive at the final expression (28) for the 
moment. 

A P P E N D I X  II 

E x a m p l e  of ca lcu la t ion  of ~'a~,... f 

II.1. Let us consider the case of the calculation of 
. ~ a a o . . . f  for two structure factors E~-=-Eea, Ee-~ Eh 
in P1; i.e. R o - l ,  R z = - l ,  t o = h = 0 .  From (41), it 
follows that 

Za(2h, h) 
1 

= _>' 
-o+~t+/~o+~=~ ao !flo !cq lfla! H~'°+~'~(E~)H~"+~(E2)- 

x 5 {[2(ao-~1)+ (to-fl~)]h}.  (II-~) 

The condition that 5{. . .  } in (II-1) does not vanish is 

2(~0-~)  + ( ro -  r~)=o.  (11-2) 

The summation in (II-1) must be made under the 
following condition: 

~0 + ~ +rio +fl~ = a .  (11-3) 

Thus it is easily shown that 

X~=H~(EI)H~(E~) , 

~4 = ¼{H4(E1) + H4(~2)} + H~(EI)H~(E~),  

& = ½H~ (E~)H4(Ee) + ½H3(EI )H2(Ee). 

In the same way, it follows from (41) that  

(11-4) 

Z~b(2h, h) 
1 

= 2 :  ~ "  _ , ,~ 

x H~o +.~ 1 + ~'o+~', (E1)H~o+~I+~,o+~,l(E2) 

× 5 { [ 2 ( ~ o - ~ l ) + ( r o - & ) ] h }  

× 5{[2(~o-S/)+(ro-r / )]h}.  (1I-5) 

The non-vanishing conditions for 5{. . .}  in (II-5) are 

2(so-s1)+ ( ro - /h )=o  
an(1 

2(~0-sl)  + (/3o-/3~)=0. 01-6) 

The rules in the summations are 

o~o + o ,  + ro + fl~ = a 
and 

so +s~ +/~o + r ;  = b .  (II-7) 

Thus, it is found that 

~22 = H4(E1) + H4(E2) + 2He(Ex)He(Ee) , 

z~83 = H2(E1)H4(EQ , 

Z3o. = H3(E1)H2(E2) + HI(EI)H4(E',.) , 

z , ,  = i{H~(E~ )H~( E.~) + H~( E~ )H~(Eo_) } + H~(E~ )H,(E2) . 
(1I-8) 

In the same way, 

,~322 = Ha(Ez)Hz(E2) + 2Ha(E~)H4(E,,) + t t~(Ei )[I6(E,~) , 

~333 = H3(E1)HdE2) • (I1-9) 

Further terms up to Z3333~ ]lave been calculated 
without giving the results here. 

II.2. As another example, corresponding to the cases 
treated by other authors, the calculation of Sa~...] 
will be shown for three structure factors with 
E~ -- Eh~, Ee =-- E h 2  , E 3  ---- Eha and h~ + he + ha = 0 for 
P1. From (41), it follows that  

1 
~v'a(hl, h2, h3) = 

× H~,o+~,,(E~)Sa,,+/h(F-,e)Hro+r~(E3) 

× 5{(~o-a~)h~ + (ro-r~)h~ + (7o- 7,)h.~}. (1I-]0) 

The non-vanishing condition for 5{. . .}  is 

~ o - ~  =f lo-r~ =7o-7~ • (II-11) 

The rule in the summation is 

ao+ro+7o+~x l  +r~ + 7 ~ = a  . (II-12) 

Thus, we obtain the following results: 

~ = 2 H ~ ( E ~ ) H I ( E ~ ) H ~ ( E 3 )  , 

, ~ =  ~{Ha(E~) + cyc.} + {H~(E~)H~(E2) + cyc.}, 
~5 ----- {H~(E1)Hi  (E2)H1 (E3) + eye.  } .  ( I I - 1 3  ) 

In the same way, 
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~22 = (H4(E1)+ cyc. ) +  2{H~.(E~)H~.(Ee)+ cyc. }, 
~,~ = 2{H~(E~)H~(E~)H~(E~) + cyc.},  
X~a = 4H2(E~ )H~(E~.)H~(E~) , 
~ = ½{H~(E~ )H~ ( E~ )H~ (Ea) + cyc. } 

+ 2{Ha(E~)H~(E~.)H~(Ea)+ cyc.},  
2~22 = 2{H~ (E~)H~ (E~)H~ (Ea) + eye. } 

+ 4{H~(EI)H~(E~)H~(Es) + cyc.},  
~ = 8Ha(E~ )H~(E~.)H~(E~) . (11-14) 

In  this case also, we have calculated down to the 
last  t e rm in (40). 

11.3. Xa~...! in P2~/c 
As an example for higher s y m m e t r y  consider the 

calculation of 2:~...! for two s t ructure  factors 
E~ - E~ ,  E~ - E~. (h~ = (2h, 0, 2l), h~. = (h, k, 1)) in 
P2~/c. In  this case, i t  is given t h a t  

[lO ] [_1 o !] 
Ro=  0 1 - 1 ,  R I =  0 - 1  = - 1 ,  

0 0 0 0 - 

[1oi] [1o!] 
R 2 =  0 1 ---- R, R a =  0 - 1 = - R ,  

0 0 - 0 0 

t 0 = h = 0 ,  t 2 = t 3 =  -- t .  (11-15) 

From (41) and (11-15), it  follows tha t  

(1/i /~)~o+~+~+~ 
Xa(hl, h~.) = 2 

~o+~+~+~ ~o !~o ! ~ ! ~  ! ~2 ! ~  ! ~ ! ~  ! 
+ / ~ 0 + / 3 1 + B 2 + / 3 3  = a 

× H~0+~+~+~(E~)H~0+~+~+~(E2) 
× exp {2:~i[(a~.+a~)th~ + (f12+ fl~)th2]} 
x ~{[(ao- a~)l + ( a ~ -  a~)R]hl 
+ [ ( ~ 0 -  ~)1 + (f12-/%)R]h~}, (11-16)  

in which ~ = 2 is the s tat is t ical  weight for the special 
reflection E~. The non-vanishing condition for 5{ . . .  } is 

[(a0 - c~i)l + (c~. - a s ) ~ ] h l  
+ [(flo-fl~)l + (f12-fl~)R]h~ = 0 ,  (II-17) 

and the rule for summat ion  is 

a 0 + ~ + a ~ + a ~ + ~ 0 + ~ + ~ 2 + ~ a = a .  (II-18) 

From these, i t  is easily given t ha t  

2 ~ =  (4/V2)H~(E~)H~ (E~.)(- 1 )~+~, 
~a = H4(E1) + ~H~(E~.) + 4H~.(EI)H~(E~), 
2 ~ =  {(4/~2)H~(E~)H4(E~) 

+(4/~2)H~(E~)H2(E2)}(- 1) ~+~. (II-19) 

La the same way, Z722, 2:~, 2:an, . . . ,  2:aa~ are easily 
derived and these are uti l ized in Appendix III .3.  

11.4. Calculation of Xa~.../ related to any number m of 
structure factors E~, . . . ,  Em in the case of P1 
The calculation in this case has been carried out 

by us to 0(N-a/2), t ha t  is to the te rm 2:san in the rela- 
t ion (40). Ber tau t  (1955a) has carried out a calcula- 
tion, in which has been derived only the terms 
~'3, ~'4--½~V'22 and ~7~-~2 .  He has dropped some 
terms such as ZTss, X4s, 2:~22, X~ss. These terms are also 
necessary for the calculation of joint probabi l i ty  
approximate  to 0(N-~/"). Unfor tuna te ly  our calculation 
shows tha t  these terms have tu rned  out lengthy 
and complicated. Hence we shall not  write the results 
here explicitly. However,  it  may  be said t ha t  our 
theory in § 3 has made the calculation easier than  
the other methods.  Fur thermore ,  it  is to be noted tha t ,  
a l though not given, these calculated results have been 
applied in the evaluat ion of the expected values 
described in § 4. 

A P P E N D I X  III  

J o i n t  p r o b a b i l i t y  d i s t r i b u t i o n  P(EI ,  • • . ,  Era) 

I I I '1 .  The joint probabi l i ty  dis t r ibut ion P(E1, E2)for 
two s t ructure  factors E 1 -  E2h, E 2 -  Eh in P1  is as 
follows : 

= ~ (E~ + E~)} P(E1, E2) (1/2~) exp { - : t  2 2 

× [1 + (z3/2)H1(•l)H2(E2) - (z4/8){H4(E1) + H4(Ee) } 
+ (z~/8)H2(E1)H4(E~)- zs{¼H3(EI)H2(E2) 
+ ½g~ (E1)H4(E2) } - (z3z4/16){H5(E1)H2(E2) 
+ H1 (E1)H6(E~.) } + (zaa/48)Hs(E~)H6(E2) 
+ (z6/2){~[H6(E~)+ H6(E2)]-~H2(E~)H4(E2)} 
- - ( z 3 z 5 / 4 ) { ½ H 4 ( E 1 ) H 4 ( E 2 )  + ~H2(E1)H6(E2)} 
+ (z~/128 ){Hs(E1) + Hs(E2) + 2H4(E~)H4(E2) } 
- (z~z4/64){H6 (E~)H4(E2) + H2(E~)Hs (E2) } 
+ (z~/384)H4(E1)Hs(E2)+ (zT/6){Hs(E~)H2(E2) 
+ H3(E1)Ha(Ee)+~HI(E1)H6(E2)} 
+ (zsz6/4){ ~[HT(E~)H2(E2) + H~ (E~)Hs (E2)] 

~Hs(E~ )H6(E~)} + (zcz~/16){½HT(E~)H2(Eg) 
+ ~Hs(EI)H4(E2) + ½H3(E~)H6(E2) + ~H~(E~)Hs(Eg.)} 
-- (z~zs/16){½Hs(E~)H6(E2) + -~H~(E1)Hs(E~)} 
+ (z~z~/256){Hg(E~)H~(E~)+ 2H~(E~)H6(E2) 
+ H~(E~)H~o(E2)}-(za~za/384){HT(EI)H6(E2) 
+ Hs(Ex)H~o(E2) } + (z.~/3 840)Hs(EI)H~0(E2) + . . .  ] .  

( I I I -1)  

111.2. The joint probabi l i ty  dis t r ibut ion P(E~, E2, E~) 
for three s t ructure  factors E~ - Eh~, E2 ~ Eh2, E3 -~ Eh3 
(hi + ha + h3 = 0) in P i  is as follows : 

P(JEx, E~, Ea) = (1/(27~) a/~) exp {-- ½(E~ + g~ + E~)} 
× [1 + zaH~(g~)H~(g2)H~(ga)- (z4/8){H4(gx)+ cyc.} 
+ (z2/2)H2(E~)H~.(E2)H2(Ea) 
- -  (z5/2 )(Hs(E1)HI (E2)HI ( E3 ) + cyc.} 
-(zsz4/8){H~(E~)HI(E~)H~(E~) + cyc.} 
+ (zaa/6)H~(E~)H3(E2)Hs(E~) + ze{~[H6(E~) + cyc.] 
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- -  ~-He(E~ )He(Ee)He(E3) } 
- -  ( Z 3 Z S / 2 ) { / - / 4 ( E 1 ) H e ( E e ) H e ( E 3 )  + cyc. } 
+ z2{l~[Hs(E~) + cyc.] + ~[Ha(E~)H4(Ee) + cyc.]} 
-(z2z4/16){H6(E~)He(E~.)He(Es) + cyc.} 
+ (z4/24)H4(Ei)H4(E2)H4(E3) 
+ z~{I[H~(E1)Hi(Ee)H~(E3)+ cyc.] 
+ ¼[Hs(E~)H3(Ee)H~(E3) + cyc.]} 
+ z3z6{~-s[HT(Ei)Hl(Ee)H~(E~ ) + cyc.] 

7 H3(E~ )H~(E~.)H3(E3) } 
+ (z4z5/16){[HT(E~)Ht(Eu)H~(E3)+ cyc.] 
+ [(Hs(E~)H3(Ee) + H3(E~)H~(Ee))H~(Ea) + cyc.]} 
- (z2z~/4){H~(E~)Ha(Ee)H~(E3) + cyc. } 
+ z~z~{~-~[Hg(E~)H~(Ee)H~(Ea) + cyc.] 
+ I[HdE~)H~(Ee)H~(Es) + cyc.]} 
- ( z 3 z 4 / 4 8 ) { H 7 ( E ~ ) H ~ ( E 2 ) H 3 ( E 3 )  + cyc. } 
+ (z~/120)H~(E~)Ha(Ee)H~(Ea) + . . .  ] .  (III-2) 

111.3. The joint probability distribution P(E~, Ee) 
for two structure factors E ~ -  Ea~, Ee--E~2 (h~ = 
(2h, 0, 2/), he= (h, k, 1)) in P2t/c is as follows: 

P(E1, Ee)=(1/2z) exp  { _ 1  2 ~(E~ +E~)} 
× [1 + (z3/V2)HI(E1)He(Ee)(- 1) k+Z 
- -  z4{1H4(E~ ) + ½H4(E2)} + (z~/4)He(E~)H4(Ee) 
- z5 {(1/I/2)H~(EQH4(Ee) 
+ (1/~2)Hs(E1)He(Ee)}(- 1)k+z 
- z3z4{(1/S V2)HI(Ei)H6(E2) 
+ (1/4 V2)Hs(E~)H~(Ee)}(-- 1)g+~ 
+ (z33/12]/2)H~(Ex)H~(Ee)(- 1)~+~+... ] .  (III-3) 

A P P E N D I X  I V  

In order to illustrate the usefulness of the general 
expressions (40) and (41), another example will be 
shown here of the joint probability distribution for 
two structure factors Ea, and Ea where h'  and h 
not necessarily independent. This example of the joint 
probability distribution with the use of general space 
group operators shows a more general form than tha t  
of Appendix III ,  so that  it is applicable to any centro- 
symmetric space group. For the sake of simplicity, 
we shall calculate the joint probability distribution 
P(gh,  , gh) under the approximation of 0(/V -i12) which 
is based on two terms up to Z'3 in (40). 

In the present case, (40) and (41) give us 

P ( E h , ,  g h )  
=(1/2z) exp {--½(E2h,+E2h)}[1 +(z8/S)~3], (IV-l)  

where 

s~ = 2 '  (V(~ /~h ' ) )~ ' (V(* /~ ) )~  
z(~+~p)=3 Hap  ! fl~,! 

P 

x exp {2~i[(Z~ptp)h' + (Zfl~tp)hJ} 
s--1 s--i 

(IV-2) 

The non-vanishing condition for 6 is 

!!0 1 a~Rv + ~Rp h = 0 .  (IV-3) 

The summation is carried out under the condition 

s--i s--I 

Z ~p + .X #p = 3. (IV-4) 
p=0 p=0 

Now let h' and h be two indices which satisfy a 
relation: 

Case I h ' =  2 h ,  (IV-5) 

then equation (IV-3) becomes 

s--1 s--1 

As the second case, let h' and h be two indices which 
satisfy another relation different from (IV-5) ; namely, 

Case I I  h ' = ( l - R r ) h ,  Rr41, - 1  . (IV-7) 

Then equation (IV-3) becomes 
s--1 s--1 ] 

Any other relation between two indices h' and h 
which give the non-zero contribution based on _F3 
for the joint probability distribution P(Eh,, Eh) does 
not exist except those of case I and case II. 

In case I, under the condition in the summation 
(IV-Q, the possible partitions for ap and tip which 
satisfy the relation (IV-6) are given by 

ap = 1, /~p = 2 and otherwise 
a=fl=O; p = 0 , 1 ,  . . . , s - l ,  (IV-9) 

where symbol /~p represents the corresponding co- 
efficient for the operation - R ~ = I R p  (the transla- 
tional part  being - t p ,  and I being the operation of 
inversion). Hence, in this case, Z3 in (IV-2) becomes 

8 2! HI(E2h)H2(Eh) . (IV-10) 

With (IV-I), this gives us the joint probability 
distribution: 

P(E2h , Eh)----(1/2z) exp {_  ½(E2 h2 + El,)}2 
x [1 +(Z3/2)(S/e2h82h)½Eeh(E2h-- 1)]. (IV-11) 

In the case II,  under the condition (IV-4), the possible 
partitions for ap and tip which satisfy the relation 
(IV-8) are given by 

a p =  1, fi~= 1, /~q: 1 and otherwise 
a=fl=O; p=O, 1 , . . . , s - 1 ,  (IV-12) 

where flq represents the coefficient for the rotational 
operation Rq=RpRr and the corresponding transla- 
tional part  is given by tq = t p R r  + tr. Thus, in this case, 
X3 in (IV-2) becomes 



432 D E T E R M I N A T I O N  OF S I G N S  OF S T R U C T U R E  F A C T O R S  

S('Vie(~--p~)h)½('VlSh) exp {2si[tv(1-- Rr )h- -  tvh + tqh]} 

X H~(E(1-Rr)h)H2(Eh)  

=S(z /eO_p~)he~)  t- exp (27dtrh)H1(E(l_Rr)h)H2 (Eh) • 

(IV-13) 

Therefore we obta in  from (IV-I)  with (IV-13) 

(E(I--R.)h P(E(I-/L.)h, E h ) =  (1/2z~) exp [ -  1 2 +E~)] 

x [ 1 + Z3(T/8(l_Rr)h e2) ½ E(l-Rr)h exp (2;ziht~) (E h - 1 )]. 
(IV-14) 

The result  (IV-11) is not par t icular ly  new, since the 
same result  has a l ready been found in the case of P1. 
The joint  probabi l i ty  dis t r ibut ion (IV-14) obtained 
from case II  consolidates the results derived for 
par t icu lar  space groups case by  case by Haup tman ,  
Kar le  and others, and may  be compared with 
MacGillavry's  inequal i ty  relation (1950). 

We shall show here the explici t  formulae of (IV-14) 
for the cases of some par t icular  space groups. (It is 
assumed tha t  E h is a reflexion of general type.) 

(1) P21/c  

Using (II-15), it is easily shown tha t  

(1-  R2)h = , (1 - R3)h = , h ~- , 
l LOJ 

exp [2:~ihto.] = e x p  [2:~ihh] = ( -  1) ~~ l. (IV-15) 

Hence, subst i tu t ing (IV-15) in (IV-14), we f ind the 
following relations for the probabil i t ies  of signs. 

P+(se~, o, 2t ) = ½ + (za/2 V 2 )E2h, o, 2~( - 1)z+l(E]~l- 1) , 

P + (so, 2~, o) = ½ + (za/2 [ /2 )Eo ,~ ,o  ( - 1 )~ +1 ( E ] ~ t -  1 ) .  

(IV-16) 
(2) P 4 / m  

In  this  case, 

[i ° R o =  1 

0 
!] - - :1 ,  R t  = 0 - - 1  , 

0 0 - 

R : ~ =  l , 

L0 0 - -  " 'i] II3 = -- 1 ~ , 
0 0 

0 
0 --IJ 

/~5 = - -  0 , 

0 - -  

R6 = 0 
0 

R7 = 

Hence 

( l - R 2 ) h  = 

0 l 
- 1  0 

0 0 

t p = 0  ( p = 0 , . . . , 7 ) .  

0 , (1 -  R3)h = 
21 

'i] 
(IV-~7) 

, ( I V - I S )  

L21jFh+M [~-k] (1-R.)h = / / ~ - - h / ,  0 - R s ) h  = + / ~  , (IV-19) 
2l 

(1-R0)h= O J' ( l - R , ) h =  + k . ( I V - 2 0 )  

Now two relat ions in (IV-19) give the  same prob- 
ab i l i ty  formula,  since they  relate to each other by  
a s y m m e t r y  operation; and s imi lar ly  in (IV-20). 
As the summary  of results, from these equations with 
(IV-14), wc obtain:  

P+(s2, , ,2~,o)= ½ + (za/2V2)E~h,2~,o(E~. l - -  1), 

P+(so, o, 2l) = ½ + (Za/4)Eo, o, 2z (E~kl-- 1 ) , 

P + (s1~ +~, k-h, O) = ½ + (Z3/2 ]//2)Ea +k, ~-h, o ( E ~ l - -  1) , 

E ') P+(sh+~, ~-h,2l) = ½ + (zs/2)Ea+~, ~-h,2t( ~ . 1 - 1 )  
(IV-21) 

(3) R3 
In this case, 

[ : i ! ]  [-! ° i] Ro = =- 1 , R 1  = - 1  , 

0 0 -- 

[ , i ,  0] Re = - 00 - 0  ' 

[0 , ! ]  
R 4 =  0 0 , 

1 0 

[ 'i i] 0 - -  

R5 

t p = 0  ( p = 0 , . . . , 5 ) .  

[ ° ° i ]  1 0 , 
0 1 

Hence, 

[!+!] (1 - -  R 2 ) h  = + , (1 - R a ) h  = k + , 

+ l +  

(IV-22) 

(IV-23) 

[!!] [!:!] (l - R4)h = , (1 - Rs)h = . (IV-24) 

The two equations in (IV-23) and (IV-24) do not  lead 
to independent  probabi l i ty  formulae, for the same 
reason as in example  (2). As the results of these two 
sets of equations, we obtain:  

2 P+(sh+~,~+ z, z +h)= ½ + (zs/2)E,,+~, ~+z, z+h(E~kz-- 1), 
E 2 P+(Sh-a., ~--z, t-a) = ½ + (Za/2)Eh-~, z - t ,  z-h( t,~Z-- 1) . 

(IV-25) 

A P P E N D I X  V 

I t  is of interest  to look into the case in which the  
number  nk of the terms in  the summat ions  contained 
in A3, A~, A~' and  A5 of the relat ion (42) increased 
with the increase of the number  2i of the atoms in  
uni t  cell. I n  this  case the sequence of expanded terms 
becomes not necessari ly adequate,  since the effects 
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of the sum terms such as ,~H~(Ek)He(E~+k) are 
k 

not small  compared wi th  those of the single terms. 
In  order to es t imate  the effects of these sum terms 
appropriately,  let us consider their  variances. When  
both  nk and N are large, each var iance of the sum 
terms becomes as follows (see Klug,  1958 and Vaughan,  
1959). 

(n~/iVz) • for ~ H~(Ek)He(Eh+k), .Y, H2(Ek)Hz(E.,.h+k) 
k k 

in A3 and A~, (V-l)  

(n~/Na) • for ,~,H~(Ek)H~(E~k)H~(Eh+k), 
k 

,~ H~(Ek)H~(E~+k)H~(E2h ~-k) 
k 

in A~, (V-2) 

(n~,/Na)" for .~, H~(Ek)He(E:k)H~(E~+k)He(E~h.~k) , 
k 

k 

in A~'. (v-a)  

Now, as discussed by Klug (1958) and Cochran (1958), 
nk is to be taken  as 

n k oc _~72. (V-4) 

Fur thermore  we shall  assume tha t  z3~_N -1/" and 
z~ ~ z3za ~_ z5 ~_ N -3/9 hold approx imate ly  even for the 
case of non-equal  atoms. In  such a case each order 
of A0, . . . ,  A5 in (42) becomes 0 ( N  -1/2) for A0, A3 and  
As, O(N -~) for A~, O(N -a/~) for A~, A2, A~, A~', A4 and 
A~. Taking these facts into account, rearrange the 
sequence of series in (42) as follows: 

<82h > = Ao + A3 + A5 . . . . . . . . . . . . . . . .  O( N -'/2) 
+A~ . . . . . . . . . . . . . . . . . . . . . . . .  O(N-') 

+A~+A2+A~+A~'  + A 4 + A ~ . . . O ( N - m ) .  (V-5) 

This new series becomes an adequate ly  convergent 
progression when N is large. Thus, as a first approx- 
imat ion,  we have 

(S2h) ~ Ao + As + A5 .  (V-6) 

Now it  is seen tha t  A3, A 3, A~' and A5 contain a 
number  of terms which Vaughan has used in his 
regression calculation. His t r ea tment  corresponds to 
the te rmina t ion  in the second line, O(N-1), in (V-5). 
Wri t ing  

<82h>---- E2hS2h , (V-7) 

and  using his notat ion:  

l(a) = H~(Eh), 
2(b) - H2(E2h)H2(Eh), 
2(c) = ..~H2(E1,)H~(Eh+k), 

k 
3(b) -- H2(Eh)..~,Hg.(Ek)H~(E~h+k), 

k 

3 ( d ) -  He(Eh) Z, He(Ek)H2(E~+k) , 
k 

3(e) ~: .~'H2(Ek)H2(E2k)H~.(Eh~k), 
k 

3(g) ~ .~H2(Ek)H2(Eh+k)H'z(E.,.htk), (V-8) 
k 

our result  can be expressed by 

X2h= ½zs[1 (a)] + (¼zs--½z~)[2(c)] + (½z3z4-½z:~)[3(b)] 
+ (z3z4-z])[3(d)]+ ¼z3z413(e)] + z][l(a)J[3(g)]. (V-9) 

On the other hand,  Vaughan gave the following 
example  of his regression formula 

--.-h = c1[1 (a)] + ce[2(b)] + c3[2(e)J + C4[3(/J)J 
+ c513(e)] + c613(g)], (V-10) 

where the coefficients c j , . . . ,  c6 are the mmmrica] 
constants. In  our t rea tment ,  the term corresponding 
to Vaughan 's  2(b) has been excluded since it is O(N- a/2), 
a l though it  might  t)e contained in AI and A4 in (42). 
Moreover, for the case of equal atoms, the terms 
3(b) and  3(d) in our expression disappear.  Similar ly  l,o 
ours, the coefficient c4 of 3(b) in Vaughan 's  formula is 
considerably small  and  the te rm 3(d) is absent.  
I t  is of interest  to notice tha t  both expressions are 
formal ly  in  ha rmony  with each other, except the 
slight difference between the terms relat ing to 3(g). 

The convergence of our expression (V-5) becomes 
more and  more rapid  as N increases. However,  
in the case of Vaughan 's  example  where N = 8 ,  the 
convergence will not be good enough for practical  
calculations. 

In conclusion, the authors  would like to express 
their  hear ty  thanks  to Prof. T. WatanabS,  Facu l ty  
of Science, Osaka Universi ty ,  for his kind interest.  
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