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A systematic investigation has heen carried out on the theory of joint probability distribution
of signs of structure factors, which is applicable to centrosymmetric space groups. Joint probability
of a set of centrosymmetric structure factors is also calculated in a more general way than the
methods given by Bertaut in 1955 and Klug in 1958. Using the results thus obtained, various
expected values for signs and their products necessary for the evaluation of corresponding prob-
abilities arc caleulated. Tho results are discussed.

1. Introduction

The statistical methods in crystaliography introduced
by Wilson and continued by a number of authors
have been extended to the determination of phases
of structure factors. Besides the development, along
the line of Wilson’s theory, followed by Hauptman &
Karle (1953), Cochran & Woolfson (1955), Bertaut
(1955a, b), Klug (1958), and others, algebraic methods
have also been worked out by Cochran (1954),
Hauptman & Karle (1957), Bertaut (1959), and others.
The new joint probability methods by Hauptman &
Karle (1958) as well as the ‘chaine statistique’ by
Bertaut (1960) have also been devised. Finally
Vaughan (1959) has made critical comments on these
statistical methods.

In the present paper we put forward a statistical
theory applicable to any centrosymmetric crystal,
from the point of view mainly similar to that of
Bertaut (1955a, b) and Klug (1958), but trying to
generalize their methods in some respects.

In §2 a concept of joint probability of signs is
introduced which is useful in the treatment of the
cases of centrosymmetric space groups and its nature
is analysed.

In §3 our method of calculating joint probability
of structure factors is shown. It is mainly based on
the methods of Bertaut (1955a, b) and Klug (1958).
However, our results have a form more general and
capable of easy application to any special centro-
symmetric space group.

In § 4 various probabilities of signs and sign products
as well as the corresponding expected values
(mathematical expectations) are given for the case
of P1, using the theory of § 2 and the results obtained
in §3. The results are then discussed.
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2. Joint probability distribution of signs
of structure factors

In the statistical theories for the determination of
signs of structure factors hitherto given by many
authors, the heart of the problem is in finding the
joint probability of structure factors with their
magnitudes and signs. Here the magnitudes are
determinable in principle from measurements. Let us
introduce a concept of the joint probability distribu-
tions of signs under the condition that the corre-
sponding magnitudes of structure factors have already
been fixed in accordance with observation.

2-1. General expression

Denote by E; the normalized structure factors, s;
their signs (+1 or —1) and E; their magnitudes; i.e.
E;=E:s;, and E;=|E;]. Introduce joint probability
distribution function P(si, sz, ..., sm) for a set of m

signs §1, ..., Sm. Then it is easily shown that, in view
of s;= +1 and s?=+1,
m m
P(sy, .y 8m)=(1/2m) {1+ X (sipsi+ 3 (i858
m i=1 i>j=1
+ 3 (sissidsissit . 81 SmYS1. . Smy, (1)
i>j>l=1
in which
(iy=3 ... 2 siP(s1, ..., 8m),
s1=+1 Spm==%1
<Sz8/> = 2 P Z SiSjI)(Sl, ey .S‘m) ,
s1==%1 sm=11
(sispsiy = X ... X ssiP(sy, ..., 8m), elc. (2)
s1=%1  sp=x=1

The summation is to be carried out over all the possible
values, +1 and —1 for each sign si(¢=1, ..., m),
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and the symbol () expresses the expected values
(mathematical expectations) of s;, sisy, si8s81, etc.

It is to be noted that the expansion of the form of
(1) will be generally applicable to any statistical
system, such as a spin system, of m variables
81, + - .5 Sm, €ach of which can take its value of +1
or —1.

2-2. Some probabilities obtainable by reduction from joint
probability of signs
Denote by P(s1) the probability for the sign of E;
to be s irrespectively of the other signs, se, ..., sm.
P(s1) can be derived from (1) by reduction concerning
the other variables s, .

P(S1)= Z

sg=+1

v oy Smy,

Z Pls1, ooy 8m)=3{1+(s1)s1}. (3)

Sm==+1

In the same way, denoting by P(si, s2) the prob-
ability for the signs of E: and E: to be s; and s»
respectively is given by

P(81,82)= 2 .o 2 P(é‘l,..

s3=+1 Sp=+=+1

= (1/22) {1+ (s1)s1+ (s2ps2+ (s182)s1sa} . (4)
Similarly,

Psi, 80, 83) = X ... 3 Psy, ..

Sq=-+1 sm=+1
= (1/23) {1+ {s1)s1+ (S22 + (3 )83+ (S182) 8182
+ (5283 ) 8283+ {8381 8381 + (81-5‘283>818283} , (5)

-,sm)

.y 8m)

and so on.

2-3. Ezpected values

When the probability for s; to be +1 is denoted
by P#(s1), it is written from (3) as

P(s1) =3{1+ (s1)}, (6)
and the probability for s; to be —1
P(s1)=${1—(s1)} . (7

Hence the expected value {s1) can be interpreted as
a measure of deviation of these probabilities P*(s;)
from a mean value §.

When a sign product sis; is considered, the prob-
ability for sis2 to be +1 is derived from (4) to be

P(s180) =Pt: +(sy, 82) + P~ (31, 82)

= (U/22){L+ o+ Coay + (o150}

+UZ) =)= (s + (s} = {1+ (su2)},  (8)
and the probability for s;s2 to be —1 is
P—(sy80) =P+ ~(s1, 83) + P+ *(s1, $2)

= (21 + (s1)— o2y = (152}

+(1/22{L—{s1)+ (o) —(aasep}=4{1 = (s1s2)} . (9)

In this case it is also shown that the expected value
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(s182) corresponds to the deviation similar to that
in (6) and (7).
Concerning a triple product sisess, it is given that

Pt(s15283) = %{1 + <-S‘18283>} , (10)
P"(818283) = %{1 — <-S‘18283>} . (1 1)

Generally the expected value {s;...s;) is the deviation
of the probability for a sign product s;...sx to be
+1or —1 from §.

It is to be noted that the quantities required for
determination of signs of structure factors in statistical
theories are such expected values.

2-4. Conditional probability

Let the conditional probability for s; relative to
a fixed value of sz be denoted by P(si|sz) or Ps,(s1).
The relation between this quantity and Pf(sy, s2) is
given by

P(s1, s2)=P(s2)P(s1]s2) , (12)
where P(s2) and P(s1, s2) are expressed by (3) and (4).
Therefore,

P(-S‘]_lSz) = P,,z(sl)
_ Plsy, s2) _ (1/23) {1+ {si)sa+ (sepse+ (sise)sise}

P(s2) 31+ (s2)se}
R e
in which
(o, = 2 Cor50)02 (14

14+ (s2)s2

is the expected value for s; relative to the hypothesis
that the value of s; is fixed.

In the same way as in (12), (18) and (14), the
expected value for s; relative to the hypothesis that
a fixed value is given to the sign product sise is
written

(51 eyy = (s1)+(s2)8182

. 15
14 {s182) 8182 (15)

The expected value for s; under the condition that
s2 and s; have fixed values respectively is given by

o _ (81)+ (s182) 82+ (8153 53+ (515283 ) Sas3 (16)
1752083 14 (sepsat (sa)sa+t (sosapsnss

On the contrary, the expected value for s; relative
to the hypothesis for the product szs3 to have a fixed
value is

(81)+ (818283 8283
Sef3 — T T 7~ - 17
(1) 1+ (52838283 {an
Other similar examples are
o150y, = S2F CLo0) 0 as)

1+ <8233>8283
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<31>sls 3953
_ <-5'1> + <82>8182 + <83>81828283 + <818283>8283
1+ (51828152 + (Sas3)Sas3+ (5183 )S1525283

(19)

{81) + (8283)815283

. 20
1 + (518283515283 (20)

<81>318253
Derivations of other expected values under any
given condition like one of the relations from (14)
to (20) can easily be made. Thus, basing oneself upon
these relations up to (20), it can be understood that
when three structure factors of the indices 4, &', b +4’
are considered as possessing the relation susn'sp+n-=1,
the expected value for an s relative to the hypothesis
SeSnSn+ns=1 is given by
<8h>+ {Sn-Sn+n’ )
1+ (snSn'Shn- >

corresponding to (20). Therefore, using (21),
conditional probability for sp=1 becomes

Pispsnage=1(sn) = {1+ (on Dopssnn=1}

_ <3h>+<8h'8n+h'>
B %{1—*- 1+<3h3h'3h+h’>} - @2

(21)

(Sn)spspspanr=1 =

the

2:5. The relation between P(sy, Sa, .-

PE, ...,En)

Let the joint probability distribution for a set of m
structure factors be denoted by P(E, ..., En). This
is related t6 P(s1, ..., 8m) by
P(E,, ..., En)

=PEy, ..., En

., Sm) and

YP(S1, « ooy Sm | E1y ooy Em), (23)

in which P(E., ..., En) is the probability for the set
of Ei, ..., En to have the respective given magni-
tudes K, ..., E» independently of the values of signs
81, « - -, 8m. It is given by

Py, ....,En)= 3 ...

sp==+1

3 P(Esy, ...,

sm==+1

Emsm)'
(24)
P(si, ..., sm|E, ..., Ex)in (23) is nothing other than
a conditional probability for a set of sign variables
81, ..., 8m related to the hypothesis of fixed magni-
tudes of Ei, ..., En. Therefore, it is obvious that
this conditional probability P(s1, ..., Sm|E1, ..., Em)
equals to P(si, ..., Sm) originally given as (1).
Thus the relation (23) gives

P(st, ..oy Sm)=P(s1, oo, 8m|E1, ..., Em)

_P(El,...,Em)_ P(Elé‘l,...,Emsm)
P&, ... En) 2 ... 2 PEsy, ...,

s1==1 sm=+1

Emsm) '
(26)

The right hand side of (25) can be expanded in a form
like (1). In such an expansion the coefficients, which
are expected values, will be explicitly given, if we
can obtain the joint probability of structure factors
P(E,, ..., En).
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3. A general expression for the joint probabilify
distribution of structure factors P(E,, ..., E,)

Consideration given in §2 on the basis of the joint
probability of signs P(si, ..., Sn) in the expansion
form (1) has been found to be useful for studying
the relationships among a number of probability
equations concerning a set of signs si, ..., sm. How-
ever, by this procedure, any information about ex-
pected values themselves can never be derived. In
order to obtain these values explicitly, we have to
make use of the relation (25), which contains the
joint probability of structure factors P(E, ..., En).
Starting, in this paragraph, from a prior: probability
of ‘uniform distribution’ of the atoms in a unit cell,
we show that the joint probability P(Ei, ..., En)
will be obtained in a general form applicable to any
centrosymmetric space group. This is a kind of
generalization of Klug’s theory put forward in 1958.

3:1. Moment of &
Introduce trigonometric structure factors &(h):

s—1
&hy=r7 Z exp [2mihrS,]
s—1
= 1 3 exp [2niRphr] exp [2niht,], (26)
p=0
SP:(RP | tP)$ ’P=O, 1, ey s—1 )

in which s is the order of factor group and S, the
pth operation, of which the rotational part is R, and
the translational part t,. 7 is the order of translation
group (v=2 for 4, B,C,I; 1=3 for R; 1=4 for F).

Under the a priort probability stated above, a
mixed moment can be defined by

Mooy oo M) = E%(hy). . £9(hon)

» I.&'—-l \a
Y \ dr 2‘ exp |2nih1rszf]I s

Jz'

=0

exp -uﬂlhmrASp]} (27)

After some calculations (see Appendix I) we get
the following expression as a result:

ma .w(hl, ey hm)
', !
ottt 2 . 2 X w. .
).‘rxp=a ).wp_w H( 0)1) )
P P
s—1 ]
X exp [Qm{ S(aphi+...+ U)phm)tl?[J
s—1
xa{sz(a,,hlJr . +w,,h,,,)}, (28)
p=0
where «p, ..., wp are the integers in the ranges
0<oap<a,...,0<wp=<w, respectively; the sum-

mation is to be carried out over all possible combina-
tions of &p, ..., wp satisfying the conditions
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s—1 s—1
Zap=a,...,2wp=w~
p=0 p=0

The symbol ¢, the Kronecker symbol, means

s—1
6{2Rp(aph1+ “ee

p=0

+wphm)} =1, if

s—1

2Rp((Xph1+ et wphm) =0 s
p=0

s—1
6 { 2 Rp((Xph1+ PPN + wphm)} = 0, if
p=0

-1

2Rp(0€ph1+ P

p=0

The relation (28) has been tested by us to hold
for a number of cases hitherto calculated by other

+wyhm) £0. (29)

authors. For the case of PT, (28) becomes
m, -w(hl) sy hm)= 2 e 2 X
| | aptay=« wotwi=w
xl.. .ol
—o)hi+. .. —wi)hy}.
aol...wo!all...wlla{(ao (xl) 1+ +(w° wl) }

(30)

A formula corresponding to this relation has been
given by Bertaut (1955a).

3-2. Moment-cumulant transformation
Following Klug (1958) let us prepare the cumulants
from the moments in order to calculate the joint
probability distribution of structure factors. The
moment-cumulant transformation is generally ex-
pressed by
o ur oo ur
an—=log{2mn—}, mo=1, (31)
n=1 n! n=0 n!
where u is a carrying variable, m, the moments and

ky the cumulants. As is known, it is derived from (31)
that

ky=mi, ke=mz, ks=ms, ka=ms—3m3 ,
k5 =ms5— 10m2m3 )
ke=mg— 10m3 — 15mama+ 30m3 ,

kr=mq—21mems — 35mgma+ 210mims , etc. (32)

Extension of the one-dimensional case (31) to the

multidimensional one gives the following relations
instead of (32).

ky..w=my...p for a+...+0=1,2,3, (33)

=3 2 2 My My

a4’ =2 &+ +w’=8

ky...n=m,..

x!l...o!
x 'l o). o
Ho—(o'+ ")},
for 6 +...+w=4,

7y 0o — (o' +a")}. . .

(34)
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k

e = My ™ 2 M Mgy
e d’'=2 ot 0 =2
al.. . w! .
S rar e e L Gl GG S
H{o—(o'+")}, (35)
for ax+...+w=35, elc.

3-3. Moment-generating function
Moment-generating function M(u,, .. ., un) is given

by the following expression (Klug, 1958
M(ui, .., um)

= exp [3(ud+ .. +ui,)1exp[§1 %L] (36)

in which

Ln= 2

a+...+w=n(X!...w!

k... (V(tls 1))0" - (y(?i:m))w’ (37)

_fi .
(2n)

Further £,..., is a cumulant, S=s7 the symmetry
number (s the order of factor group, 7 the order of
translation group), and e, ..., &n the statistical
weights of special type reflections (Bertaut, 1959,
1960). f; is the atomic structure factor, N the number
of atoms contained in unit cell and ¢; the normalized
scattering factor. z,=1/(N#/2-1) holds in the case of
equal atoms (for the case of non-equal atoms, we
shall in what follows ignore the dependence of g;
and f; on h). Expanding (36) in series up to the term
of the order of N-52, we get

N
zn=2¢} and ¢;= (38)
j=1

M(u, .. =exp [§(ui+... +ub)]
1+ (za/S)L3+ {(24/8) L4+ (23/282) L3}
+{(25/S Ls+ 2324/82 L3L4+ z3/683)L }
+{ (26/8)Le+ (2325/52) Ls Ls + (23/2.52) L
+ (:824/268%) L3 L+ (24/24:89) L4)
+{(22/8) L+ (2326/8%) Ls L6 + (2425/S2) LaLs
+ (2225/28%) L2 L5 + (2023/28) Lo L2

+ (2224684 L3La+ (2120892 4+ ...].  (39)

3:4. Joint probability distribution of structure factors:
o general expression

We can obtain the joint probability distribution
for a set of structure factors P(Ei, ..., Ep), which
is the inversion transformation of M(u, ..., un) as
is shown by Klug (1958). Taking into consideration
further the relations (28), (33), (34), (35) and (37),
we get
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P(E,, ..., En)=1/(@n)") exp [—3(E2+ ... +E2)]
X [+ (23/8) X5+ (24/S){Zs — $ 220} + (25/282) X33
+ (25/8){Z's — L3z} + (2024/82){ Za3 — § Zsoa}
+ (23/6.93) Zazs + (26/8){ X6 — Zae — § Zss + 1 X022}
+ (2325/82){Z53 — a2} + (25/282){ Zaa— Zaea + $ 20000}
+ (2224/283){ Zass — § Zasaz} + (25/24:84) L3333
+ (20/8){ L7 — L2 — Zug + Lze}
+ (2326/82){ Ze3 — § Za33 — Zazz + § Zseza}
+ (2425/82){ Zsa — 32522 — Zaaz + § X222}
+ (2825/283){ X533 — L3332} + (2825/293){ Zaa3 — Zasoz
+ 3 X s0000} + (2324/6.9%) {2333 — $ 233322}

+ (Zg/120S5)233333+ R I (40)

in which 2, is the same as in (38), 8 the symmetry
number st and

S >

Z'(ap”"+- R '+wp"")=/

I

(gt +w'p)=a ’
% (V(T/sl))z(a'p+. . .+apu-/) .. .(l/(r/em))z(“"p+' twp )

s—1

pl_To(zxp!. cewpl) (o iy Y)

s—1
X exp [Zm' { Z {(opt .. 4oy )it ..
' p=0 ror
+(w;+ PPN +wp )hm}tpj”

X Hz(a'p+~ . .+ap"")(E1) “ee Hz(w’p+. . .+wp”")(Em)
s—1
x d{ZRp(oeT',h1+ ... +C()z',hm)} ...
=0
s—1
5 {ZR,,(cx;"h1+ ot w;;"hm)} . ()
p=0

In (41) Hn(E) is the Hermite polynomial of degree n.
Further s, Rp, tp, T, &1, ..., &m and 6{...} have the
same meaning as in (28), (37), etc. The summation
is to be carried out over all possible combinations of
the values of non-negative integers oy, ..

1 rrer

’
vy Wpy < ooy

op’y +.., w, which satisfy the conditions
s—1
Zo(ocz',+ v twp) =a, el
p=

(40) with (41) is a general expression of the joint
probability distribution expanded in series up to the
term of O(N—%%). This is applicable to any case of
centrosymmetric groups. In Appendices IT, ITI and IV,
there will be shown some simple examples of special
cases of X, .., and P(Ei, ..., En).

4. Probabilities and expected values
for the case of P1

It is possible to write directly the explicit form of
P(E,, ..., Ey) for the case of Pl by substituting in
(40) the expression for X,.. ,(hi, ..., hn), the deriva-

tion of which is omitted here to save space but can
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be performed by the method given in Appendix II.
As the purpose of the present paper is not to give such.
an explicit form of P(Ey, ..., En) but to find the
joint probability of signs P(si, ..., Sm), We shall give
the following cases which are derived from the results
of our general and systematic calculations concerning
signs.

4-1. Expected value (s, ), where hy=2h

The expected value of sign sy, has been obtained
from the general expression of P(Ei, ..., En) as
follows:

<S2h> = A(Zh)=A0+A1 +A2+A2’
+As+ A3+ Ay’ + Aat+ As+ As+O(NTP), (42)

Ao=23{}H1(Eop)H2(Ep)} , (43)

A= —Zs{%Hl(Ezh)H‘;(Eh) + iH;;(Egh)Hz(Eh)}
~ z52a{5H1(Bon) Ho(En) + 35Hs(Bon) Ha(En)}
+23{&Hs(Eon)He(En)} »

Ads= 25{511’ 3(Eon)H Z(Esh)}
+2s24{} Ho(Ep) H3(Eopn) Ha(E3p)
+ %H4(Eh)H1(E2h)H2(E3h)
+ }Ho(Ey)Hs(Bon)Ha(Egp)
+ }H3(E o) Ho(Esn) He(Eyp)
+ &Hs(Bon) Ho(Esp) Ha(Een)}
+23{}Ha(Ey,) Hs(Eop) Ha(Egp)
+&H2(Ey)Hs(Eop)H2(E )
+ $Ho(Ey)H3(E o) Ha(Egp) Ho(Egn)
+}Hs(Eon)He(Esp) Ho(Esp)Ha(Een)}

(44)

(45)

A=z §11H4(Eh/2)H1(E2h)}
+2324{} Ha(Epjo) H2(Ep) H1(Esp)
+ 3Ha(Eyp)Ho(Espp) Hi(Esn)
+ %5He(Bys)Ha(Eons) Hi(Eon) }
+ 23{F5Ha(En o) Ha(En) H1(Eon)
+ $Ho(Eyjo)Ho(En)He(Egn o) Hi(Eon)
+$Ho(By3)Ha(Bonjs) Ho(Eynjs) Hi (Eqn)}, (46)

Av=25{HH(Epn) = Ha(B) By}
+ 2524{ H(Ean) Ha(Bp) 2 Hol B Hal B )
+ {Hu(Bun) Hol ) 3 Hal By Ho(Bo)}
+ S H (B Ho By) 2 Ho(B) Hl(By 1)
+ {Ha(Bon) Ho(Ey) S Ho B Ho( B} s (4)
Ag=2324{}H1(Eon) { Ho(Ey)Hz(Eoy)He(Ep i)}

+23{H1(Ezp)H2(Ey) %‘ Hy(Ey)Hz(Ey x)He(Eonyk)} »
(48)
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=z§{% 1(E2n) % Ho(Ey)Hao(Eox)Ho(Ey 1) Ha(Bon 1)
+ H1(E5n) %‘ Ha(Ey)Ho(En i) Ho(Bop k) Ha(Eonyox)} »
(49)
As=z32a{{sH1(Eon) H2(Ep) Ha(Ep)
+ f5H (B on) Ha(Eon) He(En)}
— 23{%H1(Eon) Ho(Eon) He(En) Ha(Ey)} (50)
A= ‘Zs{i“Hl E2h)H"(Ezh)H (Ew)Hz(E3n)
+ f5H1(Eon) H3(Ep) Ha(Ey o)
TaHl(Ezh)H4(E2h)H2(Eh)H2(E4h)} ) (81)

As= —Zg{i‘Hl(Ezh)Hg(Eh) { Hs(Ey)He(En k)
+ 1 H1(Eon)Ha(Eop)Ha(Ey) %‘H2(Ek)H2(E2h+k)}' (52)

These terms Ay, ..., A5 are divided into the following
classes according to characteristics given below.*

Ao contains spectra Ey, and Egp, only to the order N=12,
A, contains spectra Ey and By, only tothe order N =372,

A2 contains the terms of a few spectra Kz, Esp, Een
as well as By and E,y,, the order being O(N—3/2).

A; contains the terms of spectra Eyp, Esnp, Eys,
Eons, Esnjs in addition to Ey and Eyy, O(N—32,
As contains the terms depending on certain sum
(average) effects of spectra in a sufficiently large
range of the reciprocal lattice which are expressed
by the forms X Ha(Ey)Hz(Ey,y), efc. This term

k

is similar to the formulae of Cochran (1954) and
- Klug (1958, equation (5-1)).
A; contains the terms similar to the case of As,
possessing, however, the forms of the type of
{ Ho(Ey)Hao(Eqx)Ho(Ey 1), ete.
A;' contains the terms similar to the cases of As and
Aj, possessing, however, a different type of sum
effects such as

21;: Ho(Ey)Ho(Eoy) Ho(En k) Ho(Eon k), ele.

As contains the terms of spectra By and E,, arising
from the expansion of the denominator in (25)
in evaluation of expected values.

Ay contains the terms arising from the same circum-
stance as in A4, however, other spectra besides
E, and Ey entering.

A5 contains the sum effects of many spectra arising
from the expansion of the denominator in (25).
This term is similar to Klug’s fourth-order for-
mula (equation (5-18)).

* Except in terms 44, 4," and A;, the same spectra cannot
appear more than once in one of the Hermite polynomial
products. It is to be added that the summation with regard
to Kk has also been carried out with this precaution. Moreover,
term K is not included.
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4-2. Probability P+(s;n)
The probability P+*(ss) is then obtained from (6)

with (42)
P*(sn) =31+ (san)} -

If the relating structure factors are assumed to be
limited only to Ej and E,,, then

<82h>=A0+A1+A4 . (54)

This result is equivalent to that of Kiug (1958).
If the terms relating to zsz4 and 2§ in (42) are all
neglected, we have

(33)

(seny=23{3 H1(Eon) Ha(En) } — 25{3H1(Eon) Ha(Ey)

+ }H3(Eon)Ha(EBy)} + 25{{5Ha(Eon) Ha(Egp)

+55Ha(Enp)Hi(Eop)}

+25{3 H1(Eon) % Ha(Ey)Ho(Ey )} - (55)
This is equivalent to that of Bertaut (1955a). Only
the first and fourth terms are found in the monograph
by Hauptman & Karle (1953).

It is to be noted that the terms As, A3, A5" and As
contain those used by Vaughan in his regression
formulae. As Vaughan commented, when the number
of spectra is taken too large, the sum terms will
generally have such a strong effect that the expansion
in orders of N2 might lose its effectiveness. However,
as shown in Appendix V, even in such a case, we may
rearrange the order of the terms so as to maintain
its usefulness, the dominant terms in (43) ~ (52)
beeoming Ao, A3 and 4s.

In such a case

(Sany=Ao+ As+ As= $zsH1(Eon) Ha(Ep)
— 1{(228 — 25) + 4z3(25 — za) Ho(Ey)}
X Hi(Eop) %Hz(Ek)H2(Eh+k)

— b2a(e —2a) Hy(Bon ) Ho(En) Z Ha(Ei) Ho( Bons) - (56)

Further the case of equal atoms is now considered.
Then we have

-

2a=N"2 z5=2324=23 (67)
Hence,
<32h>=A0+A3+A$= (1/2N1/2)H1(E2h)H2(Eh)
— (1/4N**)H1(Eon) z;H‘Z(Ek)H2(Eh+k) . (58)

Substitution of (58) into (53) gives
P (son)= ‘%{1 +<{smy} =4+ (18N By {2(E} —1)
l/N 2 (B —1)(Eq 1)} (89)

This is the probablhty formula conespondlng to
Cochran’s relation (1954):

Egp=N{2(E;—1)— N(E}—1)(Epx—1) },

which Hauptman & Karle have also derived with
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their new joint probability method (1958), Vaughan
(1959) with his regression formula and some authors
rederived by the algebraic approach (Hauptman &
Karle, 1957; Bertaut, 1959).

4-3. Expected value (Sp,Sn,)

The expected value of a product of two signs
and sp, is obtained in the form

<sh18h2> = (Sn,) {Sne) + <sh13h2>*:
where the first term in the right hand side of (61)
is given by the product of two expected values of (42):
8y (Snoy =A(h1)A(h2)
=23{}H1(Ey,)H1(En,)Hao(Epy o) Ha(Enype) )+ O(N2) .
(62)

Shy

(61)

The second term {sy sp,* is a sort of residual term

<sh18h2>* = B(h,, hg) =B1+Bz+B2’+0(N_2) s (63)
in which
By =24{ Hi(Ep,)H1(En,) Ho(E y g +1o)
+ éHl(Ehl)Hl(Ehz)Hz(Ei(h]_—hz))} ’ (64)

By=23{H1(En,) H1(Eny) Ha(E oy 1n5)) Ha(E y a1 1)
+ %Hl(Ehl)Hl(Ehg)Hz(Ehﬁhz)Hz(Eé<h1+h2))

+ %Hl (Ehl)Hl(Ehz)Hz(Eh1—h2)H2(Ei(hl—hz))} ) (65)
B =24{}H1(En,)H3(Ep,)0n,, sn, +int. }

+ z%{[%Hl(Eh1)H3(Eh2)H2(E2h2)6h1, 3hy + int"]

+ (3H1(En; ) Ha(Epy) Ha(Bpypo)Ony, on, +int ]}, (66)

where ¢ is again the Kronecker symbol, int. the
expressions for h; and h in the corresponding relation
to be interchanged. It is to be noted that the form
of the relations (61) and (67) given below may be said
to have a natural appearance showing well the co-
operative character of the correlation of signs. It is
further added that Bi is the term given by Bertaut
(1958).

4-4. Expected value {Sn,SnySnyy for hi+he £ h3=0

Our calculation on the expected value for product
of three signs sp,, Sn, and sp, where hy+ha+hz=0
gives

(ShyShySing) = {81 {Snay {Sng + {8ny) {SneSn3)™
+ (Sng) (SngSny Y™ + (Sng) {SnySne)* + {SnySngdng)™s  (67)

where each term in (67) possesses the same meaning
as in (61); namely,

<8h1> <8h2> <sh3> A( hl hZ)A(h3)
=23 {%Hl Ehl)Hl(Ehz)Hl(Eha)HZ(Eln/Z)

X Ho(Bpype) Ho(Bngpe) }+ O ) (68)

4217

<sh1> <8h28h3>* + <8h2> <sh38h1>* + <sh3> <8h18h2>*
= A(hy)B(hs, hs)+ A(hz)B(hs, h;1)+ A(hg)B(h;, hs)
=2zg24{[} H1(Ep,) H1(Ep,) H1(En,)
X H2(Eh1/2)H2(E(;i:h2¥h3)/2) +cye.]
+ [5H1(En,)H1(Ey,) Ha(Epy) He(Ep, 2)0n,, 5, + Perm. ]}
+23{(1H1(En,) H1(En,) H1(En,)
X HZ(Ehl/z)H2(Eihz:Fha)H2(E(ih2:Fh3)/2) +cye.]
+ (3 Hi(En,)H1(Ep,)Ha(Eng) Ha(Eny )

X Ha(Bpgypo)0ng,2m, + perm.]} + O(N37) | (69)

(SnySnaSngy* = C(hy, ha, hs)
=Co+C1+C{+C2+C3+C3+Cs+ 05+0(N_5/2) (70)

Co=23H1(Ey,)H1(Ey,)H1(Ey,) , (71)
Cr=—2s {JQ‘H(i(Ehl)Hl(Ehg)Hl(Eh;;) + cyc.}
—2324{} H5(Ey,)H1(Ep,) Hy(En,) + eye.}

+23{§ Ha(En,) Ha(En,) Ha(Ep,)} (72)

C1 =zs24{[} H3(Ep,) H3(En,) H1(Enz)Ons, om, + perm. ]
+ [ Hs(Ep,)H1(En,) H1(Eng)Ong, ony Ong, 3n, + perm.]}
+ 23 {} H5(En,) H3(Eny) H1(Ey,)0n,, on, Ong,3n, + P},
(73)
Co=7324{[} H3(En,) H1(Eny) H1(En,)
X Ho(E 3p, + haxhgye) +Pperm.]
+[4 Has(En))Hi(Ep,) H1(En,) Ha(E2n,) + cyc.]
+ [} Hi(Ey,)H1(Ep,) Hy(Ey,)Ha(Ey, o) +cye.]}
+Zg {[% Hl(Ehl)Ha(Ehz)H3(Eh3)H2(E:I:h2=Fha) + cyc']
+ [ Hy(Ep,)H1(Bny) Hi(Eny) Ha( By o)
X Ho(E (4 py5ngye) +CyC.]
+ [ H3(Ey,)H1(Ep,) Hi(Eny) Ho(Eon,)
X H2(E(3h1ih2¥h3)/2) + perm.]
+ (4 Hs(En, ) Hi(Epo) H1(Epg) Ha(Epy o) +cye.]

+ [%H5(Eh1)H1(Eh2)H1(Ehs)Hz(E‘Zhl) + Cyc-]} s (74‘)

Cs=23{[} Hs(Ep,) Hs(En,) Hi(Eny) Ho(En,)
X Opg, 21y Ong, 30, + Perm.]
+[3 Hs(En,)H1(En,) H1(Epy) Ha(Eon,)

X 6h2, 3hy 6!13,4111 + Perm']} ’ (75)

Cs=23{} Hs(Ep,)H1(En,) H1(En,)
X %Hg(Ek)Hz(Ehﬁ_k) + Cyc.} s (76)
04—2324{ H, Ehl)Hl(Eh2)Hl(Eh3)H4(Ehl)+Cyc }
—2B{(3 Hi(Ey,) Hi(Ep,) Hi(Eny) Hao(En,)
X Ha(En,)Ha(En,)]
+ 3 Hy(En,)H(Ep,) Hi(Eng) Ho(Eny) Ha(Eny)
X Ha(E nyzny) +cye.]
+[3 Hi(Eny) H1(Eny) H1(Ep;)H2(En ) Ha(En, ) + Cye.]
+ [%Hl(Ehl)Hl(Ehz)Hl(Ehg)Hz(Enhl)Hzl(Ehl +cye.]},
(77)
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Cs= —23{} Hi(Ep,)H:\(En,) H1(Eny)
X Ha(Ep,) %' Ho(By)Hao(Eyw, 1) +cye.}. (78)

The terms from Co to C5 in (70) are divided into
classes like Ay, ..., As in (42).* Upon the similar
consideration to that in the case of (56), we obtain

{3nySnySng) = Co+ O3+ Cs =23 H1(Ey ) H\(Eny) H1(Ehy)
— 23 {H\(En,) H1(Ep,)Hi(Ey,)
x %‘HZ(EK)Hz(Eh1+k)+cyc.} . (79

Therefore, using (10) and putting zg=N"12,

P+(3h13h23h3) =} {l + <8h1sh2‘sh3>}
= % + (1/2N1/2)Eh1Eh2Eh3

x{1—(I/N)[%‘(Ei—1)(Ei1+k—l)+cye.]}. (80)

This result does not agree with any one of the
results: the equality obtained by Hauptman & Karle
(1958), the similar one by Vaughan (1958) and
Bertaut’s statistical formula (1960).

Note. The expected values of triple products of
signs for the case of h;+hs+h3z+0 and further the
expected values of higher multiple products of signs
have also been calculated. However, to save space
we do not show these lengthy and complicated results
here. Although they are not given, it is to be noted
that all such results have been derived as natural
by-products of our systematic procedure based on the
theory of §2 and § 3.

5. Conclusion

We have presented a systematic theory for deriving
certain probability formulae useful for sign determina-
tions of centrosymmetric structure factors; that is,
starting from the joint probability distribution for a
set of signs, via reduced probabilities, we derive the
corresponding expected values, the following con-
ditional expected values, and finally the various
conditional probabilities for signs or sign produects.
Although not discussed precisely hitherto by any
author, such an investigation seems to be of value in
the practical procedure for determining signs of
centrosymmetric structure factors.

By making use of general space-group-symmetry
operators, our calculation of the joint probability
distribution of structure factors has been carried out
in a more general manner than that of other authors.
As the results of such procedure, we finally obtained

* The symbol eyc. means the expression for hy, hy, h, in
the corresponding equations to be interchanged cyeclically,
the symbol perm. the expression for h,, h,, h; to undergo
permutation operation. In each case, the same operation is
acted upon the relation h,+h,+h;=0 at the same time,
In addition, it is to be noted that + of the indices in these
equations should agree with + in h; +h,+ h;=0. The condi-
tion for the summation over k is the same as in (42).

DETERMINATION OF SIGNS OF STRUCTURE FACTORS

the general expression (40), with (41), for the joint
probability distribution of structure factors; this is
capable of easy application, not only for the case of
a few chosen structure factors, but also for the case
of a greater number of structure factors and even
for the cases of higher symmetry space groups.

The application of the present theory to the case
of P1 has shown that it covers not only the results
given by Hauptman & Karle, Bertaut, and Klug, but
also gives in a natural manner a probability formula
corresponding to the well-known Cochran relation
and further the terms related in a sense to Vaughan’s
regression formula. It may be said that by this example
of the case of P1 the implications of the present theory
have been demonstrated, consolidating the well-known
statistical theories developed by Hauptman & Karle,
Bertaut, and Klug in a more unified form, and clari-
fying the situations of the important relations
alrcady obtained in their theories.

APPENDIX 1
Defining the trigonometric structure factor &(h) as
(26), moment m,.. ., is given by

‘m_\...,,,(hl, ey h1)1)=§a(h1). . .Ew(h,,,)

N s—1 N
— g hede \ drj 2 exp [2n;'h1rSp]} s

X . p=0
x {Z exp [2m'hmrSp]}
=0 s—1

:f‘*’""*“’Sdr{Z exp [2niR hir]exp [2nih1tp]} -
p=0
s—1 w
X .. {2‘ exp [2niRh,r] exp [Qm'hmtp]} . (I-1)
=0

A factor such as
s—1 ‘A
{2 exp [2ZmRphir] exp [:2m'h1tp]f
p=0

in (I-1) can be rewritten ecasily as

Al

2 oo exp 2ai[ X Rynyhir]}
s~‘l II ~p! r .
P{gr’_“ peo x exp {271 | X a,mity]}, (I-2)
— ;
where a,(p=0,1,...,5—1) are the integers in the
ranges 0 < op <o, (p=0,1, ...,8—1), respectively,

and the summation is to be carried out over all
possible combinations of values of «o,ay, ..
satisfying the condition

oy Bs-1,

1
Sop=a.
»=0

Hence (I-1) can be transformed to
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Y : !
Toz+...+a,\dr{ 2" e
0 Zap=a= H(Xp!
4

x exp {2ni[ 3 Rpophyir]} exp {2ni[ 3 (x,,hltp]}}
» P

!

w

X...8 2 =

{pr=wnwp!
14

X eXp {Zni[Z Rywphnr]} exp {27i[ X w,,h,,,tp]}}
»

...o!
— 4xtlo 2 z 3 o
' Zap=a Z‘wp—wn( wp')
3
x exp {2ni[ 2 (eph1+ . . . + wphm)ty]}
I3
X \exp {27i[ 2 Rp(ocphy + . . . + wphm)r]}dr .
) P (I-3)

As is known, the integration of the right hand side
of (I-3) is as follows.

\exp (27i[ 3 Rp(aphi+ . .. + wphy)r]jdr
2 )

s—1
= (S{ZRp(/Xph] +...+ wph,,,)} . (1—4)
p=0

Thus we arrive at the final expression (28) for the
moment.

APPENDIX IT

Example of calculation of X, .. ¢

I1-1. Let us consider the case of the calculation of
Zag .. .5 for two structure factors Ey = Ezp, Ez = Ey
in P1; ie. Ro=1, Ri=—1, to=t:=0. From (41), it
follows that

Za(2h, h)
1
= 2‘ T p _Hoz o E.)H - E2
vosmsimspsms ol Bolan 1t 1 roter (B0 H i (B2)
+(fo~pu)h}. (II-1)

X 6{[2(0(0—061
The condition that §{...} in (II-1) does not vanish is
+(fo—p1)=

The summation in (II-1) must be made under the
following condition:

2(oxo— 1) (I1-2)

co+or+po+fri=a (I1-3)
Thus it is easily shown that
23=H(E\)H(E2) ,
Zy= 1{H4 E\)+ H4(E2)}+H2 E\)Hy(E,) ,
25 = lIf1 (E1)H4(Es) + 1H3 (E1)Ho(E>) . (II—4)

In the same way, it follows from (41) that
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2an(2h, h)

1
= ) 2 —- R T{A7
agtartfori—a aoraiBorsr=b X0 foloa! Bilog! Boloxi 1!

X Hao_h“+,'0+a'1(E1)H/io+ﬂ1+/3'o+/?'1(E2)
x {[2(x0—01) + (Bo—p1)1h}
x 8{[2(0cg— 1) + (Bo—p1)]h} .

.} in (II-5) are

(I1-5)

The non-vanishing conditions for 6{..

2(xo— 1)+ (fo—f1)=0
and
2ag— 1)+ (Bo—P1) =0 (11-6)
The rules in the summations are
xo+on+fo+pri=a
and
ooty +Po+pi=0b. (11-7)

Thus, 1t is found that

2oo=Ha(E\)+ Hy(E2)+
2ss=Ho(E1)H4(Ez) ,
Z3o=H3(E\)Hz(E2) + H(E1)Hy(E2)
Zis=}{Hs(E1)Ho(Ez) + Hy(E1)Ho(E2)} + I3(E1)Ha(Ez) .
(TTI-8)

2Ho(Ey)Ha(Es) ,

In the same way,

Zs2o=Hs(E\)Ha(E2)+ 2H3(E ) H 4(
233 = Hs(E\)H¢(E>) .

Eg) + Ill(lﬂ‘j)ll(}(E2) )
(11-9)

Further terms up to Xsssss have been calculated
without giving the results here.

II-2. As another example, corresponding to the cases
treated by other authors, the caleulation of 2.,
will be shown for three structure factors with
= Ey,,, E2 = Ey,, E3 = Ey, and hi+ha+h3=0 for
Pl From (41), it follows that
1

ao+Botrotar+priyi=a ol folyolon!Bilyy!
x Hao+a1(El)Hﬁn+ﬁ1(E2)H7’0+71(E3)

Za(hy, he, h3) =

x 0f(xo—oa)hy+ (Bo—B)he+ (yo— y1)hs} . (11-10)
The non-vanishing condition for 6{...} is
xo—or=Pfo—pPr1=yo—y1. (I1-11)
The rule in the summation is
xo+fot+yotort+fr+yi=a (11-12)

Thus, we obtain the following results:

2s=2H,(E\)H (E2)H\(Es) ,
Za=}{Ha(E1)+cyc.}+ {Hz(E1)H2(Ez) +cye.}
25={H3(E1)H1(E2)H1(E3)+Cyc.} . (11-13)

In the same way,
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2o = {H4(E1) + cyc.}+ 2{H2(E1)H2(E2) + cyc.} ,
22 =2{H3(E1)H1(E2)H1(E3) +cyc.} y
233 =4Hs(E\)Ha(E2)H2(Es) ,
a3 = %{Hs(EﬂHl(Ez)Hl(Es) + CyC.}
+2{H3(E\)H3(E2)H:1(Es) +cyc.} ,
Zsoa=2{Hs5(E1)H1(E2)H1(Es) +cyc.}
+ 4{H3(E1)H3(E2)H1(E3) + cyc.} s

2333 =8H3(E1)Hs(E2)H3(Es3) . (11-14)

In this case also, we have calculated down to the
last term in (40).

11-3. 2ab~-~/ m P21/C

As an example for higher symmetry consider the
calculation of Xj..., for two structure factors
E,=Ey,, Ex=Ey,, (h1=(2,0,2l), he=(h, k,1)) in
P2y/c. In this case, it is given that

1 0 0 -1 0 0
Ry=| 0 1 0|=l, Ri=| 0 -1 0|=-1,
0o 0 1 0 0 -1
-1 0 0 1 0 0
R:=| 0 1 O0}|=R, Rs=| 0 -1 0O|=—-R,
0 0 -1 L 0 0 1
K
t0=t1=0, to=t3= % =t. (11—15)
L3
From (41) and (I1I-15), it follows that
(1/ ]/81)“°+°‘1+“2+“3
2a(hy, hp) =
albn, Moy = 2. wololon BrloalPalonifal

+Bo+B1+B2+B3=a
X ero+a1+a2+a3(E1)Hﬁo+ﬂ1+ﬂ2+ﬂ3(E2)
x exp {271 (v +xa)thy + (B2 + Bs)ths]}
x 0{[ (0 —x1)1+ (xe — x3) R]hy
+[(Bo— Bu)1+ (B2 — Bs)RIhz} ,

in which ¢ =2 is the statistical weight for the special
reflection E1. The non-vanishing condition for 6{. ..} is

[(oco—oa)l+ (2 —x3)R]hy
+[(Bo— B+ (Bz— Bs)RIh2=0 , (II-17)

and the rule for summation is

(I1-16)

co+xit+oaetos+Po+fi+pfe+Pa=a. (II-18)

From these, it is easily given that

Zs=(4/Y2)H1(E1)Ha(Ez)(—1)**,
2s=Hy(E,\) +3Hy(Es) +4Hz(E ) Ha(Ez) ,
So={(4] YD Ha () Ho(E2)

+(4/y2)Hs(E1) Ha(E2)}(— 1) (11-19)

In the same way, X2, 22, 23, ..., 2333 are easily
derived and these are utilized in Appendix III-3.
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I1-4. Calculation of X,,...; related to any number m of
structure factors Ei, ..., En tn the case of P1

The calculation in this case has been carried out
by us to O(V~32), that is to the term X333 in the rela-
tion (40). Bertaut (1955a) has carried out a calcula-
tion, in which has been derived only the terms
23, 2y—312e and Xs5—23. He has dropped some
terms such as Xss, 243, Zaze, 2333. These terms are also
necessary for the calculation of joint probability
approximate to O(¥~3?). Unfortunately our calculation
shows that these terms have turned out lengthy
and complicated. Hence we shall not write the results
here explicitly. However, it may be said that our
theory in §3 has made the calculation easier than
the other methods. Furthermore, it is to be noted that,
although not given, these calculated results have been
applied in the evaluation of the expected values
described in § 4.

APPENDIX III
Joint probability distribution P(E,, ..., E,)

III-1. The joint probability distribution P(E, Es) for
two structure factors E; = Eap,, E2 = E, in Pl is as
follows:
P(Ey, E2)=(1/2n) exp {— }(E} + E3)}

x [1+ (23/2) H1(E1) Ha(Ez) — (24/8){ Ha(E1) + Ha(E2)}

+ (23/8) Ho(E1) Ha(E2) — 25{} H3(E1) Ha( Ez)

+ 3 H1(E1) Hao(Es)} — (2524/16){ Hs(Ey) Ho(E2)

+ Hl(El)HG(Ez)} + (z§/48)H3(E1)H6(E2)

+ (26/2){§[ Ho(E1) + Ho(Ez2)) — 3 Ha(E1) Ha(E2) }

— (2325/4){3 Ha(E1)Ha(Es) + $H2(E1)He(Ez)}

+ (zi/lZS){Hs(El) + Hg(E-2) +2H4(E1)H4(E2)}

— (2324/64){ Ho(E1) Ha(E2) + Ho(E1) Hs(E2)}

+ (23/384) Hy(E1) Hy(E2) + (27/6){H5(E1) H2(E2)

+ H3(E1)Hy(E2) + 3 H1(E1)He(E2)}

+ (2526/4){ §[H7(E1)Ho(E2) + H1(E1) Hs(E2)]

—%Hs(El HG(Ez)}+ (2425/16){»]2‘H7(E1)H2(E2)

+ 3H5(E1)Ha(Ez2) + $Hs(E1)Ho(E2) + 3H1(E1) Hg(Ez)}

— (2325/16) {3 Hs(E1) Ho(Ez2) + §Hs(E1) Hs(Ez)}

+ (Z323/256){H9(E1)H2(E2) +2H5(Eq\)He(E2)

+ Hl(El)Hlo(Ez)} . (2324/384){H7(E1)H6(E2)

+ Ha(E1)Ho(Ez)} + (25/3840) Hs(Ey) Hyo(E2) + . . .] -
(IT1-1)

~—

III-2. The joint probability distribution P(E1, Ee, Ej3)
for three structure factors E1 = Ey), E2 = Ey,, Es = Ey,
(hi+he+h3=0) in Pl is as follows:
P(Ei, Es, E;)=(1/(27)*?) exp {—}(E}+ E3+ E3)}
X [1 + Z3H1(E1)H1(E2)H1(E3) — (Z4/8){H4(E1) + cyc.}
+ (23/2) Ha(E1) Ha(E2) Ho(Es)
- (25/2){Hs(El)Hl(Ez)Hl(Es) + OyC.}
— (z324/8){Hs5(E1)H1(E2)H1(E3) + cyc.}
+ (23/6) Ha(E1) Ha(E2) Hs(Es) + ze{{s[ He(E1) + cyc.]
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— §H2(E1)Ha(E2)Ha(E3)}

— (2925/2){H a(Ev) Ha(Es) Ha(E5) + cyc.}

+2i{ds[ Hs(E1) + cyc.] + [ Ha(E1) Ha(E2) + cyc.]}

—_ (2%24/16){H3(E1)H2(E2)H2(E3) + cye.}

+ (23/24) Ho(E1) Ho(E2) Ho( E3)

“+ 27{%[H5(E1)H1(E2)H1(E3) “+ cyc.]

+ 3 [Hs(E1)H3(E2)Hy(Es) + cye.]}

+ 2326{11-8 [H’;(El)Hl(Ez)Hl (E3) “+ cyc.]

— §H3(E1)Hy(E2)H3(Es)}

+ (2425/16) {[Ho(E1) H1(E2) H1(E3) +cye.]

+[(Hs(E1)H3(Ez) + Hs(E1)Hs(Ez2))H1(E3) + cye.]}

— (2325/4){Hs(E1)Hs(E2)Hs(E3) +cyc.}

=+ Z322{ﬁ[ﬂ9(El)Hl(Ez)Hl(Ea) + Cyc.]

+&[Hs(E1)Hs(E2)Hi(Es) + cyC.]}

— (2224/48){H7(E1)H3(E2)H3(E3) + CyC.}

+ (23/120) Hs(Ex) Hs(E2)Hs(Es) + . . .] . (IT1-2)
ITII-3. The joint probability distribution P(E., Ez)

for two structure factors E; = Ehl, E;=E,;, (h; =
(2h, 0, 21), he=(h, k, 1)) in P2;i/c is as follows:

P(E,, Ez)=(1/27) exp {— }(E}+ E})}
X [1+ (23 Y 2) Hy(Er) Ho(E2)(— 1)
—24{}Ha(Er) + $Ho(E2)} + (23/4) Ha(Er) Ha(E2)
—_ 25{(1/ V2)H1(E1)H4(E2)
+(1/y2)H3(E1)Hz(E2)} (—
- 2324{(1/8 V2)H 1 (E1)He(Ez)
+(1/4y2)Hs(E1)Hao(E2)} (— 1)+
+ (22/121/2)H3(E1)H6(E2)(—— 1.,

1)k+l

(I11-3)

APPENDIX IV

In order to illustrate the usefulness of the general
expressions (40) and (41), another example will be
shown here of the joint probability distribution for
two structure factors En and E, where h’ and h
not necessarily independent. This example of the joint
probability distribution with the use of general space
group operators shows a more general form than that
of Appendix III, so that it is applicable to any centro-
symmetric space group. For the sake of simplicity,
we shall calculate the joint probability distribution
P(Ey,, Ey) under the approximation of O(N~12) which
is based on two terms up to X3 in (40).
In the present case, (40) and (41) give us

P(Ey, Ey)
=(1/27) exp {— $(Ef + Ep)}[1 + (25/8) 23] ,

where

2= X
ZopHBp)=3

(IV-1)

(V(z/en)) =2 (Y (z/en) ) 2Pr
H op! Bp!
(Zﬂptp)h]}

s—1

x HZaP(Eh,)Hzﬂp(Eh)é{[z (prp] b +[ > ﬂpRpJ }
(Iv-2)

x exp {2mi[(Zxptp)h’ +
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The non-vanishing condition for § is
s—1 s—1
|z och,,] o+ f > ﬁpnp} h=0. (IV-3)
Lp=0 p=0

The summation is carried out under the condition

s—1

thp+2ﬂp—3

p=0

(IV-4)

Now let h' and h be two indices which satisfy a
relation:

Case I h'=2h, (IV-5)
then equation (IV-3) becomes
s—1
[ > 20pRp + zﬁpR,,] h=0. (1V=6)

As the second case, let h’ and h be two indices which
satisfy another relation different from (IV-5); namely,

Case II =(1-R,)h, R.=*1, —1. (IV-T)
Then equation (IV-3) becomes
s—-1 s—1
[za,,Rp(l—R,)+ > f}pRp} h=0. (IV-8)
p=0 p=0

Any other relation between two indices h’ and h
which give the non-zero contribution based on X3
for the joint probability distribution P(Ey., E;) does
not exist except those of case I and case II.

In case I, under the condition in the summation
(IV—4), the possible partitions for «, and f, which
satisfy the relation (IV-6) are given by

ap=1, ﬂp=2 and otherwise
x=8=0; p=0,1, ..., (IvV-9)

where symbol B, represents the corresponding co-
efficient for the operation —R,=IR, (the transla-
tional part being —tp, and I being the operation of
inversion). Hence, in this case, 23 in (IV-2) becomes

s—1,

o e (t/em)? (z/en)

21
With (IV-1), this gives us the joint probability
distribution:
P(Eyp, Ey)=(1/27) exp {— }(E3s+ Ey)}
x [1+ (23/2)(/ean ) Ean(BR — 1)] . (IV-11)
In the case IT, under the condition (IV—4), the possible

partitions for «, and B, which satisfy the relation
(IV-8) are given by

Hy(Egn)Hy(En) . (IV-10)

ap=1, Bp=1, Bg=1 and otherwise
x=p=0; p=0,1, ..., (IV-12)

where f; represents the coefficient for the rotational
operation R;=R,R, and the corresponding transla-
tional part is given by tg=t,R;+t,. Thus, in this case,
23 in (IV-2) becomes

s—1,
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s(t/ea_ryn)¥(T/en) exp {2ni[ty(1— Rr)h—tyh+toh]}
x Hi(Eq-pyn)Hz(Ep)

=8(7/eg-rpnen)? exp (2nit,h) Hi(Eq_gryn)Hz(En) -
(IV-13)

Therefore we obtain from (IV-1) with (IV-13)

P(Eq_Ryh, En)=(1/27) exp [~ } (Ef-r.n+ Ep)]

x [1423(t/eq—rpned) Eq_rn exp (2niht,)(Ef—1)].
(IV-14)

The result (IV-11) is not partlculally new, since the
same result has already been found in the case of P1.
The joint probability distribution (IV-14) obtained
from case II consolidates the results derived for
particular space groups case by case by Hauptman,
Karle and others, and may be compared with
MacGillavry’s inequality relation (1950).

We shall show here the explicit formulae of (IV-14)
for the cases of some particular space groups. (It is
assumed that E; is a reflexion of general type.)

(1) P2i/jc
Using (IT-15), it is easily shown that

2h 0 h
(1—Rs)h = {() , (1-R3)h = 24 , h=|k|,
21 0 l

exp [2nihts] =exp [2ashts] = (= 1)¥*4  (TV-15)

Hence, substituting (IV-15) in (IV-14), we find the
following relations for the probabilities of signs.

P+(san,0,20) =} + (23/2)/2) Eon,0,2( — 1)E+( B}y — 1) ,
P+(s0,2k,0) =%+ (23/2)/2)Eo,2x,0 (—1)EH(Efy—1) .
(IV-16)
(2) P4/m
In this case,
M1 0 O] [—1 0 OW
Ry = 1|0 1 Of—1, R, = 0 —1 of,
o o 1 L o o -1
1 0 0] f—1 Y 07
Ro=[0 1 0f, Rs=1] 0 =1 o,
0 0 —1] L o o 1l
0 -1 0] 0 1 0]
Ri={1 0 0|, Rs=|-1 0 of,
0 0 —1l Lo o -l
o —1 (0 0 1 0]
Ri=[1 0 0], R:=|-1 0 o,
LO 0 1. Lt O 0 1]
tp: (p=03 > 7) . (IV—17)
Hence
0 2h
(1—R)h =| 0 |, (—Rsh =] 2k |, (IV-18)
20 0

DETERMINATION OF SIGNS OF STRUCTURE FACTORS

h—k
h+k
2l

h+k

(1—Ry)h = [k—h}, (1—Rs)h =
21

, (TV-19)

h+k h—Fk
(1—Re)h = [k—h], (I1-R7)h = [}H—k] . (IV=20)
0 0

Now two relations in (IV-19) give the same prob-
ability formula, since they relate to each other by
a symmetry operation; and similarly in (IV-20).
As the summary of results, from these equations with
(T'V-14), we obtain:

P+(s2n, 2k, 0) 3+ (23/2Y2)Esn, 21,0(Eju—1) ,
P+(s0,0,21) =} + (23/4)Eo, 0,21 (B3 — 1) ,
P*(snsk,k-n,0)=4%+ (23/2)2) En+x, k-n,0 (B —1) ,
P+ (Snake, k-n,21) = 3 + (23/2) En+re, k-n,20(Epg—1) .
(IV-21)
(3) R3
In this case,
r 1 0 0} —1 0 O]
Ry = 0 1 o|l=1, R, = 0 -1 0},
0 0 1] L O 0 —11
0 —1 0] ] 0 —1]
Ro=| 0 o0 —1}, Ri=|-1 0o o,
’ L—1 0 (V3 L 0 —1 0l
0 1 0] 0 0 1]
R, = 0 0 1/, Rs = 1 0 0},
L 1 0 0 L O 1 0
t,=0 (p=0, ...,5) (IV-22)
Hence,
h+k h+1
(1—Ro)h=| k +1 (1—Rs)h=|k+h|, (IV-23)
I+h l+k

h—k —1
(l—R4)h=[k—-l} , (l—Rs)hz[k—h}. (IV-24)
I—h -k

The two equations in (IV-23) and (IV-24) do not lead
to independent probability formulae, for the same
reason as in example (2). As the results of these two
sets of equations, we obtain:

P+(8h+k,k+z,z+h) % (Zs/Q)Ehwc k+1, l+h(E%kl-‘l) s
PH(su—i,k—1,1-1) =%+ (23/2) En-t, k-1, 1-n B3y — 1) .
(IV-25)

APPENDIX 'V

It is of interest to look into the case in which the
number 7y of the terms in the summations contained
in Ag, Aa, Ay and As of the relation (42) increases’
with the increase of the number N of the atoms in
unit cell. In this case the sequence of expanded terms
becomes not necessarily adequate, since the effects
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of the sum terms such as X Ha(Ey)Ha(Ey,y) are
k

not small compared with those of the single terms.
In order to estimate the effects of these sum terms
appropriately, let us consider their variances. When
both n, and N are large, each variance of the sum
terms becomes as follows (see Klug, 1958 and Vaughan,
1959).

(ni/N?): for = Ho(Ey) Ha(En 11, kZHz(Ek)Hz(E-.»mk)
in A3 and 4, (V1)
(/%) for X HalB HalBad HalEn )
%‘ Hy(Ex)Ho(En k) Ho(Eon x)
in 4, (V-2)
(ni/N4): for %'Hz(Ek)Hz(E: VHa(Ey k) Ho(Eon 1 2k)

%' Hy(Ey)Ha(Ey i) Ho(Eon W) H2(Eop k)

in 45 . (V-3)
Now, as discussed by Klug (1958) and Cochran (1958),
ny is to be taken as

Ng < Nz, (V—4)

Furthermore we shall assume that zz~N~'? and
73 ~zg2a ~ 25~ N~%2% hold approximately even for the
case of non-equal atoms. In such a case each order
of Ay, ..., As in (42) becomes O(N~2) for Ay, As and
As, O(N7) for Ag, O(N—32) for Ay, As, Ay, A;', Agand
A4, Taking these facts into account, rearrange the
sequence of series in (42) as follows:

<82h>=Ao+A3+A5 ................ O(N_”Z)
FAg O(N— Y
+ A+ Ao+ Ay + A+ Aa+ Ay ON32) . (V=5)

This new series becomes an adequately convergent
progression when N is large. Thus, as a first approx-
imation, we have

<32h> ~Ao+As+ As .

Now it is seen that As, A, A;" and As contain a
number of terms which Vaughan has used in his
regression calculation. His treatment corresponds to
the termination in the second line, O(N-1), in (V-5).

Writing
<'92h> = Eonlon,

and using his notation:

(V-6)

(V-7)

I(a) = Ha(Ey),

2(b) = Hz(E.m)Ha(Ey) ,
2(c) = %‘HZ(Ek)H2(Eh+k)s
3(b) =

Ha(Ey) %' Ha(Ey)Ha(Eon k)
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3(d) = H2(Eh)%H2(Ek)H2(Eh+k) s
=4 %‘Hz(Ek)HZ(Ezk)HZ(Eh yk) ’

=
2
I

= zk:Hz(Ek)HZ(EhJ,k)HZ(Ezmk), (V-8)

our result can be expressed by

Zon=$2a1(a)] + (25 — $25) [2(c)] + (3zs2a — §23)[3(0)]
+ (2824 —23)[3(d)] + J2a24[ () | + 23[ 1(a) [3(9)] . (V-9)

On the other hand, Vaughan gave the following
example of his regression formula

Zon=c1[1(a)] +cs[2(b)]+ cs| 2(c) |+ cal 3(h)]
+cs5[3(e)] +csl3(g)] (V-10)
where the coefficients ¢, ..., ¢s are the numerical
constants. In our treatment, the term corresponding
to Vaughan’s 2(b) has been excluded since it is O(N ~%/2),
although it might be contained in 4; and 44 in (42).
Moreover, for the case of equal atoms, the terms
3(b) and 3(d) in our expression disappear. Similarly to
ours, the coefficient c4 of 3(6) in Vaughan’s formula is
considerably small and the term 3(d) is absent.
It is of interest to notice that both expressions are
formally in harmony with each other, except the
slight difference between the terms relating to 3(g).
The convergence of our expression (V-5) becomes
more and more rapid as N increases. However,
in the case of Vaughan’s example where N =8, the
convergence will not be good enough for practical
calculations.

In conclusion, the authors would like to express
their hearty thanks to Prof. T. Watanabé, Faculty
of Science, Osaka University, for his kind interest.
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